Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{35x^3-14x^2+55x^2-22x+35x-14+9}{5x-2}\)
\(=7x^2-11x+7+\dfrac{9}{5x-2}\)
b: \(=\dfrac{\left(2x-3\right)\left(4x^2+6x+9\right)}{2x-3}=4x^2+6x+9\)
\(7x\left(16x^2-1\right)=0\)
\(\Leftrightarrow7x\left(4x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ b,\Leftrightarrow\left(3x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{3}\)
c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)
=250x^3+120x-2x^2+8
=250x^3-2x^2+120x+8
d: D=(4x)^3-3^3-(4x)^3-3^3
=64x^3-27-64x^3-27
=-54
c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)
\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)
\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)
\(=250x^3-2x^2+120x+8\)
d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)
\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)
\(=64x^3-27-\left(64x^3+27\right)\)
\(=64x^3-27-64x^3-27\)
\(=-27-27\)
\(=-54\)
...
<=> 3x^5(x-3) - 4x^4(x-3) + 7x^3(x-3) - 5x^2(x-3) + 4x(x-3) - (x-3) = 0
<=> (x-3)(3x^5 - 4x^4 + 7x^3 - 5x^2 + 4x - 1) = 0
<=> (x-3)[3x^4(x-1/3) - 3x^3(x-1/3) + 6x^2(x-1/3) - 3x(x-1/3) + 3(x-1/3)] = 0
<=> (x-3)(x-1/3)(3x^4 - 3x^3 + 6x^2 - 3x + 3) = 0
<=> (x-3)(x-1/3)[3(x^4+2x^2+1) - 3x(x^2+1)] = 0
<=> (x-3)(x-1/3)(x^2+1)[3(x^2+1) - 3x] = 0
<=> 3(x-3)(x-1/3)(x^2+1)(x^2+1-x) = 0
....
a) \(x^2-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+2x^2-x+3x^2-2x+1=0\)
\(\Leftrightarrow x\left(-3x^2+2x-1\right)-1\left(-3x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)
\(\Rightarrow x-1=0\) \(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow3x^4-4x^3+4x^2-x-9x^3+12x^2+12x+3=0\)
\(\Leftrightarrow x\left(3x^3-4x^2+4x-1\right)-3\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow3\left(x-3\right)\left(x-\dfrac{1}{3}\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{3;\dfrac{1}{3}\right\}\)
a) Ta có: \(x^2-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+3x^2+2x^2-2x-x+1=0\)
\(\Leftrightarrow-3x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)
mà \(-3x^2+2x-1\ne0\forall x\)
nên x-1=0
hay x=1
Vậy: S={1}
b) Ta có: \(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow3x^4-9x^3-4x^3+12x^2+4x^2-12x-x+3=0\)
\(\Leftrightarrow3x^3\left(x-3\right)-4x^2\left(x-3\right)+4x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-x^2-3x^2+x+3x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x^2\left(3x-1\right)-x\left(3x-1\right)+\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1\ne0\forall x\)
nên \(\left(x-3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{3};3\right\}\)
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Biệt thức
10
Biệt thức
11
Phương trình không có nghiệm thực.
12
Lời giải thu được
Kết quả: Giải phương trình với tập xác định
\(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow\)\(3x^4-9x^3-4x^3+12x^2+4x^2-12x-x+3=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(3x^3-x^2-3x^2+x+3x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
P/S: đến đây tự lm nha