K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

a)  \(x^3+3x^2+3x+2=0\)

<=>  \(x^3+x^2+x+2x^2+2x+2=0\)

<=>  \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)

<=>  \(\left(x+2\right)\left(x^2+x+1\right)=0\)

tự làm

b) \(x^4-2x^3+2x-1=0\)

<=>  \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)

<=>  \(\left(x-1\right)^3\left(x+1\right)=0\)

tự làm

27 tháng 8 2018

c)   \(x^4-3x^3-6x^2+8x=0\)

<=>   \(x\left(x^3-3x^2-6x+8\right)=0\)

<=>  \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)

<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)

<=>   \(x\left(x-4\right)\left(x^2+x-2\right)=0\)

<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)

tự làm

8 tháng 8 2016

x2+3x2+3x+1-3x2-3x = 0

  => x3+1 = 0

  => x3     = 0-1

  => x3     = -1

  => x       = -1

8 tháng 8 2016

\(x^3+3x^2+3x+1-3x^2-3x=0\)0

\(\Leftrightarrow x^3+\left(3x^2-3x^2\right)+\left(3x-3x\right)+1=0\)

\(\Leftrightarrow x^3+1=0\)

\(\Leftrightarrow x^3=1\)

\(\Leftrightarrow x^3=1^3\)

\(\Rightarrow x=1\)

22 tháng 7 2016

a)\(x\left(x+2\right)-3x-6=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x-3\right)\left(x+2\right)=0\)

=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

b)\(x^3+3x^2+3x-1-3x^2-3x=0\)

=>\(x^3-1=0\)

=>x3=1

=>x=1

7 tháng 11 2021

a) 15x2-3x=0

=>3x(5x-1)=0

=>2 TH

=>*3x=0                   *5x-1=0

=>x=0                        =>5x=1=>x=1/5

vậy x=0 hoặc x=1/5

b) (3x-2) (x+3)+ (x2-9)=0

=>(3x-2)(x+3)+(x-3)(x+3)=0

=>(x+3).(3x-2+x-3)=0

=>(x+3).(4x-5)=0

=> 2 TH

*x+3=0=>x=0-3=>x=-3

*4x-5=0=>4x=5=>x=5/4

vậy x=-3 hoặc x=5/4

c) (x-1)3- (x+1) (2-3x)=-3

\(\Rightarrow\left(x-1\right)^3-\left(x+1\right)\left(2-3x\right)+3=0\)

\(\Rightarrow\left(x^3-3x^2+3x-1\right)-\left(2x-3x^2+2-3x\right)+3=0\)

\(\Rightarrow x^3-3x^2+3x-1-2x+3x^2-2+3x+3=0\)

\(\Rightarrow x^3-3x^2+3x^2+3x-2x+3x-1-2+3=0\)

\(\Rightarrow x^3+4x=0\)

\(\Rightarrow x\left(x^2+4\right)=0\)

=> 2 TH

*x=0

*x^2+4=0

vì: x^2>0

do đó:x^2+4>0

=> x^2+4 ko có gt nào x t/m y/cầu đề bài

vậy x=0

12 tháng 7 2021

\(x\left(3x-5\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)

Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)

12 tháng 7 2021

a) \(x\left(3x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)

b) \(3x^2-27=0\)

\(\Leftrightarrow3x^2=27\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow x=\pm3\)

c) \(\left(x-5\right)^2=x-5\)

\(\Leftrightarrow x^2-10x+25-x+5=0\)

\(\Leftrightarrow x^2-11x+30=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)

d) \(2\left(x+7\right)-x^2-7x=0\)

\(\Leftrightarrow2x+14-x^2-7x=0\)

\(\Leftrightarrow-x^2-5x+14=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)

e)\(7x\left(x-3\right)+2.3x=0\)

\(\Leftrightarrow7x^2-21x+6x=0\)

\(\Leftrightarrow7x^2-15x=0\)

\(\Leftrightarrow x\left(7x-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)

#H

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

8 tháng 7 2015

a) 3x(x-1)+x-1=0

<=>3x(x-1)+(x-1)=0

<=>(x-1)(3x+1)=0

<=>x-1=0 hoặc 3x+1=0

<=>x=1 hoặc 3x=-1

<=>x=1 hoặc x=-1/3

b)2(x+3)-x^2 - 3x = 0

<=>2(x+3)-x(x+3)=0

<=>(x+3)(2-x)=0

<=>x+3=0 hoặc 2-x=0

<=>x=-3 hoặc x=2