K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{3x+2}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{x^2+2x+1}\)

\(=\dfrac{3x+2}{\left(x-1\right)^2}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}-\dfrac{3x-2}{\left(x+1\right)^2}\)

\(=\dfrac{\left(3x+2\right)\left(x^2+2x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}-\dfrac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}-\dfrac{\left(3x-2\right)\left(x^2-2x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}\)

\(=\dfrac{3x^3+6x^2+3x+2x^2+4x+2-6\left(x^2-1\right)-\left(3x^3-6x^2+3x-2x^2+4x-2\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}\)

\(=\dfrac{3x^3+8x^2+7x+2-6x^2+6-\left(3x^3-8x^2+7x-2\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}\)

\(=\dfrac{3x^3+2x^2+7x+8-3x^3+8x^2-7x+2}{\left(x-1\right)^2\cdot\left(x+1\right)^2}\)

\(=\dfrac{10x^2+10}{\left(x-1\right)^2\cdot\left(x+1\right)^2}\)

 

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

23 tháng 2 2021

tham khảo 

https://hoidapvietjack.com/q/57243/giai-cac-phuong-trinh-sau-a-2x12-2x-12-b-x2-3x-2-5x2-3x60

23 tháng 2 2021

b) (2x+1)2-2x-1=2

\(< =>4x^2+4x+1-2x-1=2\)

\(< =>4x^2+2x-2=0\)

\(< =>4x^2+4x-2x-2=0\)

\(< =>\left(4x^2+4x\right)-\left(2x+2\right)=0\)

\(< =>4x\left(x+1\right)-2\left(x+1\right)=0\)

\(< =>\left(x+1\right)\left(4x-2\right)=0\)

\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\4x-2=0=>x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy....

Bài 1: Thực hiện phép tính:a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)Bài 2: Tìm x, biết:a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị...
Đọc tiếp

Bài 1: Thực hiện phép tính:

a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)

c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)

e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)

Bài 2: Tìm x, biết:

a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13

c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8

Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3     

b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5 

Bài 4: Tính giá trị của biểu thức

a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10

b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5

3
17 tháng 9 2021

\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)

 

17 tháng 9 2021

\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

10 tháng 12 2021

Chia nhỏ ra ik ạ

10 tháng 12 2021

\(\left(2x+3\right)\left(2x-3\right)-4x\left(x+5\right)=4x^2-9-4x^2-20x=-20x-9\)

\(5x\left(x-3\right)+\left(x-2\right)^2=5x^2-15x+x^2-4x+4=6x^2-19x+4\)

\(x\left(x+2\right)-\left(x-3\right)\left(x+3\right)=x^2+2x-\left(x^2-9\right)=x^2+2x-x^2+9=2x+9\)

 

30 tháng 4 2020
https://i.imgur.com/8i3ngeO.jpg
AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?

23 tháng 11 2016

dài thế ai trả lời đc hả ?

23 tháng 11 2016

tu lam di luoi vua thoi

a) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-2\right)-3\left(x-2\right)\right]\left[x\left(x-1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)

Vậy: S={1;2;3;4}

b) Ta có: \(\left(2x+1\right)^2-2x-1=2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)

\(\Leftrightarrow\left(2x+1+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{2}\right\}\)

c) Ta có: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-x^2+x-x^2+x-1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-2x^2+2x-1\right)-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-x-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-4x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\forall x\)

nên (x-2)(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy: S={2;-1}

d) Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+2x\right)+x\left(x^2+1+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}