K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

Answer:

\(3.\left(x+1\right)^3+5=-19\)

\(\Rightarrow3.\left(x+1\right)^3=-19-5\)

\(\Rightarrow3.\left(x+1\right)^3=-24\)

\(\Rightarrow\left(x+1\right)^3=-24:3\)

\(\Rightarrow\left(x+1\right)^3=-8\)

\(\Rightarrow\left(x+1\right)^3=\left(-2\right)^3\)

\(\Rightarrow x+1=-2\)

\(\Rightarrow x=-3\)

21 tháng 11 2021

\(3\left(x+1\right)^3=-24< =>\left(x+1\right)^3=-8\)

\(\sqrt[3]{\left(x+1\right)^3}=\sqrt[3]{-8}< =>x+1=-2< =>x=-3\)

HỌC TỐT!!!

5 tháng 8 2017

1. So sánh

a) \(25^{50}\)\(2^{300}\)

\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)

\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)

\(25< 64\) nên \(25^{50}< 64^{50}\)

Vậy \(25^{50}< 2^{300}\)

b) \(625^{15}\)\(12^{45}\)

\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)

\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)

\(625< 1728\) nên \(625^{15}< 1728^{15}\)

Vậy \(625^{15}< 12^{45}\)

5 tháng 8 2017

1.So sánh

a)\(25^{50}\)\(2^{300}\)

Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)

\(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)

b)\(625^{15}\)\(12^{45}\)

Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)

\(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v

18 tháng 5 2017

Mình chỉ giải câu a thôi,mấy câu còn lại dễ.

a)Ta có:\(\dfrac{x}{27}=\dfrac{-3}{x}\)

=>\(x^2=-3\cdot27=-81\)(Nhân chéo)

Mà x2>0 với mọi x nên :

Không có giá trị nào thỏa mãn điều kiện của x

18 tháng 5 2017

Tìm x biết :

a) \(\dfrac{x}{27}=-\dfrac{3}{x}\) \(\Rightarrow2x=-3.27\Rightarrow2x=-81\Rightarrow x=-40,5\)

b) \(-\dfrac{9}{x}=-\dfrac{x}{\dfrac{4}{49}}\Rightarrow2x=-9.\left(-\dfrac{4}{9}\right)\Rightarrow2x=4\Rightarrow x=2\)

c) \(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\) ( mk nghĩ bn chép sai đề bài câu này )

\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{8}{15}-\dfrac{7}{19}\)

\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{257}{285}\)

\(\Rightarrow\left[{}\begin{matrix}7x-\dfrac{5}{3}=-\dfrac{257}{285}\\7x-\dfrac{5}{3}=\dfrac{257}{285}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{218}{1995}\\x=\dfrac{244.}{665}\end{matrix}\right.\)

d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)

\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\)

\(\left|\dfrac{1}{23}x\right|=-\dfrac{43}{95}-\dfrac{18}{90}\)

\(\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{23}x=\dfrac{62}{95}\\\dfrac{1}{23}x=-\dfrac{62}{95}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\dfrac{1}{95}\\x=-15\dfrac{1}{95}\end{matrix}\right.\)

28 tháng 8 2021

a,

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)

\(\Rightarrow5^{x+3}2=2.5^{11}\)

\(\Rightarrow5^{x+3}=5^{11}\)

\(\Rightarrow x+3=11\)

\(\Rightarrow x=8\)

28 tháng 8 2021

b, (Check lai xem de sai o dau khong nhe)

\(3.5^{x+2}+4.5^{x+3}=19.5^{10}\)

Dat 5x ra ben ngoai

\(\Rightarrow5^x.5^23+5^x:5^{-3}.4\)

\(\Rightarrow5^x\left(5^2.3+5^{-3}.4\right)\)

\(\Rightarrow5^x\left(5^{-3}.5^5.3+5^{-3}.4\right)\)

\(\Rightarrow5^x[5^{-3}\left(5^53+4\right)\)

\(\Rightarrow5^x[5^{-3}\left(3125.3+4\right)\)

\(\Rightarrow5^x\left(5^{-3}\right).9379\)

=> Khong tim duoc gia tri cua x \(\Rightarrow x\in\varnothing\)

17 tháng 7 2019

a) \(\frac{4}{x+5}=\frac{3}{2x-1}\)

=> 4(2x - 1) = 3(x + 5)

=> 8x - 4 = 3x + 15

=> 8x - 3x = 15 + 4

=> 5x = 19

=> x = 19/5

b) \(\frac{x+11}{19}+\frac{x+12}{20}+\frac{x+13}{21}=3\)

=> \(\left(\frac{x+11}{19}-1\right)+\left(\frac{x+12}{20}-1\right)+\left(\frac{x+13}{21}-1\right)=0\)

=> \(\frac{x-8}{19}+\frac{x-8}{20}+\frac{x-8}{21}=0\)

=> \(\left(x-8\right)\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)

=> x - 8 = 0

=> x = 8

c) \(\left(2x-1\right)^2=\left(2x-1\right)^3\)

=> \(\left(2x-1\right)^2-\left(2x-1\right)^3=0\)

=> \(\left(2x-1\right)^2.\left[1-\left(2x-1\right)\right]=0\)

=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x-1=0\\1-2x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x=1\\2-2x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)

17 tháng 7 2019

a) 4/x + 3 = 3/2x - 1

<=> 4.(2x - 1) = (x + 3).3

<=> 8x - 4 = 3x + 9

<=> 8x = 3x + 9 + 4

<=> 8x = 3x + 13

<=> 8x - 3x = 13

<=> 5x = 13

<=> x = 13/5

=> x = 13/5

c) (2x - 1)2 = (2x - 1)3

<=> 4x2 - 4x + 1 = 8x3 - 12x2 + 6x - 1

<=> 8x3 - 12x2 + 6x - 1 = 4x2 - 4x + 1

<=> 8x3 - 12x2 + 6x - 1 - 1 = 4x2 - 4x

<=> 8x3 - 12x2 + 6x - 2x = 4x2 - 4x

<=> 8x3 - 12x2 + 6x - 2x - 4x = 4x2

<=> 8x3 - 12x2 + 10x - 2 = 4x2

<=> 8x3 - 12x2 + 10x - 2 - 4x2 = 0

<=> 8x2 - 16x2 + 10x - 2 = 0

<=> 2(x - 1)(2x - 1)2 = 0

<=> x - 1 = 0 hoặc 2x - 1 = 0

       x = 0 + 1         2x = 0 + 1

       x = 1               2x = 1

                              x = 1/2

=> x = 1 hoặc x = 1/2

a) (2x - 1)4 = 81

<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

11 tháng 7 2017

\(\dfrac{x+1}{1}+\dfrac{2x+3}{3}+\dfrac{3x+5}{5}+...+\dfrac{10x+19}{19}=12+\dfrac{4}{3}+\dfrac{6}{5}+...+\dfrac{20}{19}\)

\(x+1+\dfrac{2x}{3}+1+\dfrac{3x}{5}+1+...+\dfrac{10x}{19}+1-12-\dfrac{4}{3}-\dfrac{6}{5}-...-\dfrac{20}{19}=0\)

\(x+\dfrac{2x}{3}-\dfrac{4}{3}+\dfrac{3x}{5}-\dfrac{6}{5}+...+\dfrac{10x}{19}-\dfrac{20}{19}+10-12=0\)

\(x-2+\dfrac{2x-4}{3}+\dfrac{3x-6}{5}+...+\dfrac{10x-20}{19}=0\)

\(x-2+\dfrac{2\left(x-2\right)}{3}+\dfrac{3\left(x-2\right)}{5}+...+\dfrac{10\left(x-2\right)}{19}=0\)

\(\left(x-2\right)\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)=0\)

Ta thấy \(\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)>0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

11 tháng 7 2017

Tự hỏi tự trả lời giỏi đấy con ngu bàn phím Hà Linh