Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{-16}{4}=-4\)
Do đó: x=-28; y=-12
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+2y}{6+2\cdot5}=\dfrac{20}{16}=\dfrac{5}{4}\)
Do đó: x=15/2; y=25/4
a) \(3x = 7y \)
\(\Rightarrow \dfrac{x}{7} = \dfrac{y}{3} \)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7} = \dfrac{y}{3}=\dfrac{x-y}{3-7}=\dfrac{-16}{-8}=2\)
Từ đây ta có :
\(\dfrac{x}{7}=2 \Rightarrow x=14\)
\(\dfrac{y}{3} = 2 \Rightarrow y = 6\)
Vậy \(x = 14 ; y = 6\)
b) Ta có : \(\dfrac{y}{5} = \dfrac{2y}{10} \)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{y}{5}=\dfrac{2y}{10}=\dfrac{x}{6} = \dfrac{x+2y}{6+10}\) \(= \dfrac{20}{16}=\dfrac{5}{4}\)
Từ đây ta có :
\(\dfrac{x}{6} = \dfrac{5}{4} \Rightarrow\dfrac{15}{2}\)
\(\dfrac{y}{5} = \dfrac{5}{4} \Rightarrow \dfrac{25}{4}\)
Vậy \(x = \dfrac{15}{2} ; y = \dfrac{25}{4}\)
2. 3x = 7y và x + y = 20
Ta có: 3x = 7y
\(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x+y}{7+3}=\frac{20}{10}=2\)
Vậy \(\frac{x}{7}=2\Rightarrow x=2.7=14\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Ta có: \(\frac{x}{7}=\frac{y}{3}=\frac{2x}{14}=\frac{3y}{9}=\frac{2x-3y}{14-9}=\frac{20}{5}=4\)
\(\Rightarrow\frac{x}{7}=4\Rightarrow x=28;\frac{y}{3}=4\Rightarrow y=12\)
Tick nha minhvy1801
Ta có: 6x - 2y = 7y - 3x
=> 6x + 3x = 7y + 2y
=> 9x = 9y => x = y
=> x - y = 0
mà x - y = 10 (đb)
=> ko có x; t tm
7x - 2y = 5x - 3y
=> 7x - 5x = -3y + 2y
=> 2x = -y
=> \(\frac{x}{-1}=\frac{y}{2}\) => \(\frac{2x}{-2}=\frac{3y}{6}\)
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{-2}=\frac{3y}{6}=\frac{2x+3y}{-2+6}=\frac{20}{4}=5\)
=> \(\hept{\begin{cases}\frac{x}{-1}=5\\\frac{y}{2}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.\left(-1\right)=-5\\y=5.2=10\end{cases}}\)
ta có 6x-2y=7y-3x chuyển vế sang
=>9x=9y
do x-y=10 nên x=10+y
=>9(10+y)=9y
=>90+9y=9y
=>90=0y
=>y=0=>x=10
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
Tương tự đến hết, kiểm tra lại hộ mk nhé !
\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)
Thay vào phương trình 1 ta có :
\(6\left(10+y\right)-5y=0\)
\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)
Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)
à mk xin lỗi d ko áp dụng đc
\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Làm nốt nhé !
a) Ta có: \(-3x=7y=21z\)
\(\Rightarrow-3x\cdot\frac{1}{21}=7y\cdot\frac{1}{21}=21z\cdot\frac{1}{21}\)
\(\Rightarrow\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}=\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}=\frac{5x+10y+6z}{-35+30+6}=\frac{4}{1}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{-35}=4\rightarrow5x=-140\rightarrow x=-28\\\frac{10y}{30}=4\rightarrow10y=120\rightarrow y=12\\\frac{6z}{6}=4\rightarrow z=4\end{cases}}\)
Vậy x= -28; y=12; z=4
b) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\rightarrow\frac{x}{6}=\frac{y}{15}\\\frac{y}{3}=\frac{z}{20}\rightarrow\frac{y}{15}=\frac{z}{100}\end{cases}}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{100}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{100}=k\)
\(\Rightarrow x=6k;y=15k;z=100k\)
\(y\cdot z=900\rightarrow15k\cdot100k=900\)
\(\rightarrow1500\cdot k^2=900\)
\(\rightarrow k^2=\frac{3}{5}\rightarrow k\varepsilon\varnothing\)
Vậy x;y;z ko có giá trị thỏa mãn
c) Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{x^2}{4}=\frac{y}{25}^2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\\\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\end{cases}}\)\(\Rightarrow\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\)
Vậy (x;y) = (4;10); (-4;-10)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{20}{4}=5\)
Do đó: x=35; y=15