Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
a; \(234^{5^{6^7}}\) Ta có 5 \(\equiv\) 1 (mod 4) ⇒ 5\(^{6^7}\) \(\equiv\) 1 (mod 4)
Đặt \(5^{6^7}\) = 4k + 1
Ta có: \(234^{5^{6^7}}\) = 2344k+1 = (2344)k.234 = \(\overline{..6^{ }}\)k.234 = \(\overline{..4}\)
b; \(579^{6^{7^5}}\)
6 ⋮ 2 ⇒ \(6^{7^5}\)⋮ 2 ⇒ \(6^{7^5}\) = 2k
\(579^{6^{7^5}}\) = \(579^{2k}\) = \(\left(579^2\right)^k\) = \(\overline{..1}\)k = \(\overline{..1}\)
1/a
3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9
=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4
=> -63/20 < 2x/3 < 19/36
=> -567/180 < 120x/180 < 95/180
=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)
=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)
1/b
( 3x + 5 )( 2x - 7 ) < 0
=> 3x + 5 > 0 và 2x - 7 < 0
hoặc 3x + 5 < 0 và 2x - 7 > 0
TH1 : 3x + 5 > 0 và 2x - 7 < 0
Vì 2x - 7 < 0
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 }
TH2 : 3x + 5 < 0 và 2x - 7 > 0
Vì 2x - 7 > 0
=> x > 3 ( 1 )
Vì 3x + 5 < 0
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }
(3x - 7)5 = 32
=> (3x - 7)5 = 25
=> 3x - 7 = 2
=> 3x = 9
=> x = 3
Vậy x = 3
Chúc bn hok tốt~~
(3x-7)5 = 32 = 25
=> 3x - 7 = 2
3x = 9
x = 3