Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
mk nghĩ là bạn viết sai đề bài rồi
x+y-z =2 mới đúng
từ 3x=5y=-3z; x+ y-z = 2
=>x=x/3 = y=y/5 ;y=y/2= z=z-3
vì x/3=y/5=>x/6 = y/10 (1)
y/2=z/-3 y/10=z/-15 (2)
từ (1) và (2) => x/6=y/10=z/-15
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
x/6+y/10-z/-15 =2/1=2
do đó x=6.2=12
y=10.2=20
z=-15.2=-30
vậy x=12;y=20;z=-30
chúc bạn học tốt
nhớ kích đúng cho mk nha
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(\dfrac{3x-2y}{5}\)=\(\dfrac{2z-5x}{3}\)=\(\dfrac{5y-3z}{2}\)
⇒\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)=\(\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}\)=0
⇒3x-2y=2z-5x=5y-3z=0
* 3x-2y=0⇒3x=2y⇒\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)
* 2z-5x=0⇒2z=5x⇒\(\dfrac{z}{5}\)=\(\dfrac{x}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=\(\dfrac{x+y+z}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5
\(\dfrac{x}{2}\)=-5⇒x=-10
\(\dfrac{y}{3}\)=-5⇒y=-15
\(\dfrac{z}{5}\)=-5⇒z=-25
Vậy x=-10;y=-15;z=-25
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Từ đẳng thức : \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)
=> \(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}=\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}=0\)
=> \(\hept{\begin{cases}15x=10y\\6z=15x\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=5x\\5y=3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{5}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Rightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó : x2 + 176 = yz
<=> (2k)2 - 15k2 = -176
=> k2(4 - 15) = -176
=> k2 = 16
=> k2 = 42
=> k = \(\pm\)4
Nếu k = 4
=> \(\hept{\begin{cases}x=8\\y=12\\z=20\end{cases}}\)
Nếu k = - 4
=> \(\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}\)
3x = 5y và 2y = -3z
\(\Rightarrow\frac{x}{6}=\frac{y}{10}=\frac{z}{-15}=\frac{x+y-z}{6+10-15}=\frac{2}{1}=2.\)
\(\frac{x}{6}=2\Rightarrow x=12\)
\(\frac{y}{10}=2\Rightarrow y=20\)
\(\frac{z}{15}=2\Rightarrow z=30\)
tham khảo nha
Ta có: \(\hept{\begin{cases}3x=5y\\2y=-3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{-3}=\frac{z}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{-15}=\frac{y}{-9}\\\frac{y}{-9}=\frac{z}{6}\end{cases}}}\)
\(\Rightarrow\frac{x}{-15}=\frac{y}{-9}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có ;
\(\frac{x}{-15}=\frac{y}{-9}=\frac{z}{6}=\frac{x+y-z}{-15-9-6}=\frac{2}{-30}=\frac{-1}{15}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{15}.\left(-15\right)=1\\y=\frac{-1}{15}.\left(-9\right)=\frac{3}{5}\\z=\frac{-1}{15}.6=\frac{-2}{5}\end{cases}}\)
Vậy ...