Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\left(x^2-\dfrac{2}{3}x+\dfrac{4}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{11}{3}>=\dfrac{11}{3}\)
Dấu '=' xảy ra khi x=1/3
b: \(=2\left(x^2+\dfrac{3}{2}x\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}\right)\)
\(=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{9}{8}>=-\dfrac{9}{8}\)
Dấu '=' xảy ra khi x=-3/4
d: \(=3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=3\left(x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right)\left(x+4\right)\)
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right),\left(x+4\right)\)
\(x^4+3x^2y^2+4y^4\)
\(x^4+4y^4-2xy^3+2xy^3+2x^2y^2+2x^2y^2-x^2y^2\)
\(+x^3y-x^3y\)
\(=\left(4y^4-2xy^3+2x^2y^2\right)+\left(2xy^3-x^2y^2+x^3y\right)\)
\(+\left(2x^2y^2-x^3y+x^4\right)\)
\(=2y^2\left(2y^2-xy+x^2\right)+xy\left(2y^2-xy+x^2\right)\)
\(+x^2\left(2y^2-xy+x^2\right)\)
\(=\left(2y^2+xy+x^2\right)\left(2y^2-xy+x^2\right)\)
a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)
b: \(=\left(4x^2-7x-50\right)^2-\left(16x^4+56x^3+49x^2\right)\)
\(=\left(4x^2-7x-50\right)^2-\left(4x^2+7x\right)^2\)
\(=\left(4x^2-7x-50-4x^2-7x\right)\left(4x^2-7x-50+4x^2+7x\right)\)
\(=\left(-14x-50\right)\left(8x^2-50\right)\)
\(=-4\left(7x+25\right)\left(2x-5\right)\left(2x+5\right)\)
d: \(=\left(x^2+y^2\right)^3-8x^3y^3\)
\(=\left(x^2+y^2-2xy\right)\left[x^4+2x^2y^2+y^4+2x^3y^2+2x^2y^3+4x^2y^2\right]\)
\(=\left(x-y\right)^2\cdot\left[x^4+y^4+6x^2y^2+2x^3y^2+2x^2y^3\right]\)
B = \(\frac{8xy-6x^2}{3y\left(3x-4y\right)}=\frac{2x\left(4y-3x\right)}{-3y\left(4y-3x\right)}=-\frac{2x}{3y}\)
C = \(\frac{2x^3-18x}{x^4-81}=\frac{2x\left(x^2-9\right)}{\left(x^2-9\right)\left(x^2+9\right)}=\frac{2x}{x^2+9}\)
Bài 2:
a, Sửa đề:
\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\)
b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)
\(=\left(a-4\right)\left(a+6\right)\)(2)
Vì \(a=x^2+7x+10\) nên
\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
1,
Dùng định lý Bơ du :
\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)
\(=>a=5\)
Vậy a = 5 thì A chia hết cho B .
b,
M = \(x^2-4x+4y^2+4y+5\)
= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)
Vậy GTNN của M = 0
khi x = 2 ; 2y + 1 = 0 => y = 1/2
a) \(a^4+4=\left(a^4+4a^2+4\right)-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2+2a\right)\left(a^2+2-2a\right)\)
b) \(x^4+3x^2y^2+4y^4=\left(x^4+4x^2y^2+4y^4\right)-x^2y^2=\left(x^2+2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2+2y^2+xy\right)\left(x^2+2y^2-xy\right)\)
a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)
c: \(=\left(x^2-y^2\right)^2-10\left(x^2-y^2\right)+25-4\left(x^2y^2+4xy+4\right)\)
\(=\left(x^2-y^2-5\right)^2-4\left(xy+2\right)^2\)
\(=\left(x^2-y^2-5-2xy-4\right)\left(x^2-y^2-5+2xy+4\right)\)
\(=\left(x^2-y^2-2xy-9\right)\left(x^2+2xy-y^2-1\right)\)
= (3x)4 + 4(3x)3(4y) + 6(3x)2(4y)2 + 4(3x)(4y)3 + (4y)3
= 81x4 + 432x3y + 864x2y2 + 768xy3 + 64y3