![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)
\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)
\(=3^{n+1}.10-2^{n+1}.5\)
\(=3^{n+1}.10+2^n.2.5\)
\(=3^{n+1}.10+2^n.10\)
\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)
\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\)
\(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\)
\(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\)
\(=3^n.30+2^{n+1}.6.\frac{1}{2}\)
Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\)
\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\)
\(\Rightarrow A⋮6\left(đpcm\right)\)
Chứng minh rằng :
\(a.\)
\(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(b.\)
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(.a.\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.\left(3^2+2\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\) \(\left(dpcm\right)\)
Vậy : \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(.b.\) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
\(=3^n.30+2^n.12\)
\(=6\left(3^n.5+2^{n+1}\right)⋮6\) \(\left(dpcm\right)\)
Vậy : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
a)\(VT=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)
b)\(VT=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)
\(=3^n\cdot3\cdot2\cdot5+2^{n+1}\cdot2\cdot3\)
\(=3^n\cdot5\cdot6+2^{n+1}\cdot6\)
\(=6\cdot\left(3^n\cdot5+2^{n+1}\right)⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có:
\(n^2+1⋮n+1\)
\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
c: \(=3^n\left(3^2+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\cdot12+2^n\cdot12⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 9.27n = 35
=> 32.33n = 35
=> 32 + 3n = 35
=> 2 + 3n = 5
=> 3n = 5 - 2
=> 3n = 3
=> n = 1
b) (23 : 4).2n = 4
=> 2.2n = 4
=> 2n = 4 : 2
=> 2n = 2
=> n = 1
c) 3-2.34 . 3n = 37
=> 3-2 + 4 + n = 37
=> 32 + n = 37
=> 2 + n = 7
=> n = 7 - 2 = 5
d) 2-1.2n + 4.2n = 9.25
=> (1/2 + 4).2n = 9.25
=> 9/2.2n = 9.25
=> 2n = 9.25 : 9/2
=> 2n = 26
=> n = 6
\(a,9\cdot27^n=3^5\)
\(\Rightarrow9\cdot27^n=243\)
\(\Rightarrow27^n=243:9=27\)
\(\Rightarrow27^n=27^1\)
\(\Rightarrow x=1\)
\(b,\left(2^3:4\right)\cdot2^n=4\)
\(\Rightarrow\left(8:4\right)\cdot2^n=4\)
\(\Rightarrow2\cdot2^n=4\)
\(\Rightarrow2^n=4:2=2\)
\(\Rightarrow n=1\)
\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)
\(\Rightarrow3^2\cdot3^n=3^7\)
\(\Rightarrow3^n=3^7:3^2=3^5\)
\(\Rightarrow n=5\)
\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)
\(\Rightarrow2^n\cdot\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)
\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)
\(\Rightarrow9^n=3^n\)
\(\Rightarrow\left(3^2\right)^n=3^n\)
\(\Rightarrow3^{2n}=3^n\)
\(\Rightarrow2n=n\)
\(\Leftrightarrow n=0\)
Vậy \(n=0\)
d) Ta có:
\(6^{3-n}=216\)
\(\Rightarrow6^{3-n}=6^3\)
\(\Rightarrow3-n=3\)
\(\Rightarrow n=3-3\)
\(\Rightarrow n=0\)
Vậy \(n=0\)\(\text{ }\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bổ sung điều kiện n ∈ N
\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(=3^n\cdot3^3+2^n\cdot2^3+3^n\cdot3+2^n\cdot2^2\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\cdot30+2^n\cdot12\)
Ta có : \(\hept{\begin{cases}3^n\cdot30⋮6\\2^n\cdot12⋮6\end{cases}}\Rightarrow3^n\cdot30+2^n\cdot12⋮6\)
=> \(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}⋮6\)( đpcm )
\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(=3^n.27+2^n.8+3^n.3+2^n.4\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12\)
\(=6.\left(3^n.5+2^n.2\right)⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
kb nhá