\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)

\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)

\(=3^{n+1}.10-2^{n+1}.5\)

\(=3^{n+1}.10+2^n.2.5\)

\(=3^{n+1}.10+2^n.10\)

\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)

5 tháng 7 2019

\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\) 

    \(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\) 

    \(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\) 

     \(=3^n.30+2^{n+1}.6.\frac{1}{2}\) 

Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow A⋮6\left(đpcm\right)\)

15 tháng 1 2017

\(.a.\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.\left(3^2+2\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\) \(\left(dpcm\right)\)

Vậy : \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

\(.b.\) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

Ta có : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.\left(3^3+3\right)+2^n.\left(2^3+2^2\right)\)

\(=3^n.30+2^n.12\)

\(=6\left(3^n.5+2^{n+1}\right)⋮6\) \(\left(dpcm\right)\)

Vậy : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

15 tháng 1 2017

a)\(VT=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)

b)\(VT=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)

\(=3^n\cdot3\cdot2\cdot5+2^{n+1}\cdot2\cdot3\)

\(=3^n\cdot5\cdot6+2^{n+1}\cdot6\)

\(=6\cdot\left(3^n\cdot5+2^{n+1}\right)⋮6\)

30 tháng 11 2017

a) ta có:

\(n^2+1⋮n+1\)

\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)

b: \(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

c: \(=3^n\left(3^2+3\right)+2^n\left(2^3+2^2\right)\)

\(=3^n\cdot12+2^n\cdot12⋮6\)

22 tháng 9 2019

a) 9.27n = 35

=> 32.33n = 35

=> 32 + 3n = 35

=> 2 + 3n = 5

=> 3n = 5 -  2

=> 3n = 3

=> n = 1

b) (23 : 4).2n = 4

=> 2.2n = 4

=> 2n = 4 : 2

=> 2n = 2

=> n = 1

c) 3-2.34 . 3n = 37

=> 3-2 + 4 + n = 37

=> 32 + n = 37

=> 2 + n = 7

=> n = 7 - 2 = 5

d) 2-1.2n + 4.2n = 9.25

=> (1/2 + 4).2n = 9.25

=> 9/2.2n = 9.25

=> 2n = 9.25 : 9/2

=> 2n = 26

=> n = 6

22 tháng 9 2019

\(a,9\cdot27^n=3^5\)

\(\Rightarrow9\cdot27^n=243\)

\(\Rightarrow27^n=243:9=27\)

\(\Rightarrow27^n=27^1\)

\(\Rightarrow x=1\)

\(b,\left(2^3:4\right)\cdot2^n=4\)

\(\Rightarrow\left(8:4\right)\cdot2^n=4\)

\(\Rightarrow2\cdot2^n=4\)

\(\Rightarrow2^n=4:2=2\)

\(\Rightarrow n=1\)

\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)

\(\Rightarrow3^2\cdot3^n=3^7\)

\(\Rightarrow3^n=3^7:3^2=3^5\)

\(\Rightarrow n=5\)

\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)

\(\Rightarrow2^n\cdot\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

29 tháng 10 2016

a)

\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)

\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)

\(\Rightarrow9^n=3^n\)

\(\Rightarrow\left(3^2\right)^n=3^n\)

\(\Rightarrow3^{2n}=3^n\)

\(\Rightarrow2n=n\)

\(\Leftrightarrow n=0\)

Vậy \(n=0\)

29 tháng 10 2016

d) Ta có:

\(6^{3-n}=216\)

\(\Rightarrow6^{3-n}=6^3\)

\(\Rightarrow3-n=3\)

\(\Rightarrow n=3-3\)

\(\Rightarrow n=0\)

Vậy \(n=0\)\(\text{ }\)

24 tháng 10 2020

Bổ sung điều kiện n ∈ N

\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(=3^n\cdot3^3+2^n\cdot2^3+3^n\cdot3+2^n\cdot2^2\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(=3^n\cdot30+2^n\cdot12\)

Ta có : \(\hept{\begin{cases}3^n\cdot30⋮6\\2^n\cdot12⋮6\end{cases}}\Rightarrow3^n\cdot30+2^n\cdot12⋮6\)

=> \(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}⋮6\)( đpcm )

\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(=3^n.27+2^n.8+3^n.3+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12\)

\(=6.\left(3^n.5+2^n.2\right)⋮6\)

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn