Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8 - 3n = 11 - (3n + 3 ) = 11 - 3(n+1)
Mà 3(n+1) chia hết n+1
=> 11 chia hết n+1
Với n+1 = -11 => n = -12
Với n+1 = -1 => n = -2
Với n+1 = 1 => n = 0
Với n+1 = 11 => n = 10
Vậy n thuộc {-12 ; -2 ; 0 ; 10}
suy ra n>0
mà 3n và 4n lớn hơn hoặc bằng 0
suy ra 3n+1 và 4n+1 lớn hơn 0
Vậy n thuộc N sao thì 3n+1 và 4n+1 là 2 số tự nhiên
tui nhanh nhất , nha
Ta có: 3n+5 chia hết cho 3n-1
=> 3n - 1 + 6 chia hết cho 3n - 1
=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết cho 3n - 1
=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }
=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }
Mà chỉ có 3 chia hết cho 3 => n=1
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
Gọi b là ước nguyên tố của \(\frac{2n-1}{3n+2}\)
\(2n-1 \vdots b\)
\(3n+2 \vdots b\)
\(=> 6n - 3 \vdots b\)
\(=> 6n + 4 \vdots b\)
\(=> (6n+4) -(6n-3) \vdots b = 6n - 4 - 6n-3 = 7 \vdots b\)
\(b\) là nguyên tố nên \(b=7\)
Ta có : \(3n + 2\vdots 7 => (3n+2-14) \vdots 7 => (3n - 12)\vdots 7 = (3n - 3.4)\vdots 7 = 3(n-4) \vdots 7\)
\(=> n-4 \vdots 7\)
\(=> n-4 = 7k => n = 7k + 4\)
Vậy để a là phân số tối giản \(n = 7k + 4\)
Chắc olm lỗi nên có 1 phần bị khuất mình viết lại vào nhé
Ta có :
2n - 1 chia hết cho b
3n + 2 chia hết cho b
=> 6n - 3 chia hết cho b
=> 6n + 4 chia hết cho b
=> 6n + 4 - (6n - 3) = 6n + 4 - 6n + 3 = 7 chia hết cho b
Vì b là nguyên tố nên b = 7
Ta có :
3n + 2 chia hết cho 7 => 3n + 2 - 14 = 3n - 12 chia hết cho 7 ( hai số chia hết cho 7 thì hiệu chúng chia hết cho 7)
3n - 12 = 3n - 3.4 = 3.(n-4) chia hết cho 7 ( tính chất phân phối của phép nhân)
=> n - 4 chia hết cho 7
=> n - 4 = 7.k
n = 7k + 4
Vậy để a là phân số tối giản thì n = 7k + 4
\(x+17\) \(⋮\) \(x\) + 11 đkxđ \(x\) \(\ne\) - 11
\(x+11\) + 6 ⋮ \(x\) + 11
6 \(⋮\) \(x+11\)
\(x+11\) \(\in\) Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
\(x\) \(\in\) { -17; - 14; -13;-12; -10; - 9; -8; -5}
X + 17 = X + 11 + 6
Để (X + 17) ⋮ (X + 11) thì 6 ⋮ (X + 11)
⇒ X + 11 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
⇒ X ∈ {-17; -14; -13; -12; -10; -9; -8; -5}
a) 3n + 6 = 3n - 1 + 7
Để (3n + 6) ⋮ (3n - 1) thì 7 ⋮ (3n - 1)
⇒ 3n - 1 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ 3n ∈ {-6; 0; 2; 8}
⇒ n ∈ {-2; 0; 2/3; 8/3}
b) Để (7n + 8) ⋮ n thì 8 ⋮ n
⇒ n ∈ {-8; -4; -2; -1; 1; 2; 4; 8}
Giải thích các bước giải:
3n+5⋮n+2
⇔3n+6−1⋮n+2
⇔3(n+2)−1⋮n+2
⇔−1⋮n+21)
⇔n+2∈Ư(−1)
⇔n+2∈{−1;1}
⇔n∈{−3;−1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
⇔n∈{−3;−1}⇔n∈{-3;-1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
Mình kh btt đúng hay sai:
Ta có: - 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n.
- 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n