Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
1/2x^2-mx+2m+1=0
Δ=(-m)^2-4*1/2(2m+1)
=m^2-4m-2
Để (P) tiêp xúc (d) thì m^2-4m-2=0
=>\(m=2\pm\sqrt{6}\)
Phương trình hoành độ giao điểm của (P) và (d):
1/2 x² = mx - 2m - 1
⇔ x² = 2mx - 4m - 2
⇔ x² - 2mx + 4m + 2 = 0
Để (P) và (d) tiếp xúc thì phương trình hoành độ giao điểm của chúng có nghiệm kép
⇔ ∆´ = 0
⇔ m² - 4m - 2 = 0
∆´ = 4 + 2 = 6
m₁ = 2 + √6
m₂ = 2 - √6
Vậy m = 2 + √6; m = 2 - √6 thì (P) và (d) tiếp xúc
\(=\sqrt{3\left(x^2-2x+1\right)+25}\supseteq\sqrt{3\left(x+1\right)^2+25}\supseteq5\)
min=5 <=>x=-1
\(\text{Đặt }A=\sqrt{3x^2-6x+28}=\sqrt{3x^2-6x+3+25}\)
\(=\sqrt{3.\left(x^2-2x+1\right)+25}=\sqrt{3.\left(x-1\right)^2+25}\)
\(\Rightarrow A^2=3.\left(x-1\right)^2+25\ge25\Rightarrow A\ge\sqrt{25}=5\)
Dấu "=" xảy ra khi : x=1
Vậy GTNN của A là 5 tại x=1
a) tại m=1 thì pt có dạng \(x^2-4x+3-2=0\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Đặt \(\frac{3m^2-2m+1}{\left(m+1\right)^2}=a\)\(\Leftrightarrow3m^2-2m-1=a\left(m+1\right)^2=am^2+2am+a\)
\(\Leftrightarrow3m^2-am^2-2m-2am+1-a=0\)
\(\Leftrightarrow\left(3-a\right)m^2-\left(2+2a\right)m+1-a=0\)
\(\Delta=\left(2+2a\right)^2-4\left(1-a\right)\left(3-a\right)=24a-8\)
Để pt có nghiệm:\(24a-8\ge0\Leftrightarrow a\ge\frac{1}{3}\)
Vậy bt ban đầu đạt GTNN là 1/3 khi m=1/2
Đọc tự hiểu nhé ,có j kb hỏi lại mik