\(3\frac{1}{5}+4\frac{1}{3}=\left(3+....\right)+\left(\frac{1}{5}+\frac{1}{3}\right)=7+\frac{......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

giúp với ạ

13 tháng 9 2016

giải dc nhưng mà hoi lâu

6 tháng 7 2017

\(a.\left(\frac{6}{11}+\frac{5}{11}\right).\frac{3}{7}=1\cdot\frac{3}{7}=\frac{3}{7}b.\frac{3}{5}\cdot\frac{7}{9}+\frac{3}{5}\cdot\frac{2}{9}=\frac{3}{5}\cdot\left(\frac{7}{9}+\frac{2}{9}\right)=\frac{3}{5}\cdot1=\frac{3}{5}\)

26 tháng 3 2017

\(\frac{67}{48}\)

mk nhanh nhất , tk nha

Chúc bạn học tốt

26 tháng 3 2017

làm thế nào vậy bạn bạn giải tóm tắt qua ban giai tung buoc giai di

20 tháng 7 2018

\(\left(2.8x-32\right):\frac{2}{3}=90\)

\(2.8\cdot x-32=90\cdot\frac{2}{3}\)

\(\frac{14}{5}x-32=60\)

\(\frac{14}{5}x=60+32\)

\(\frac{14}{5}x=92\)

\(x=\frac{230}{7}\)

B , c , d tương tự

19 tháng 8 2019

\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)

\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)

\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)

24 tháng 10 2016

\(\frac{41}{72}\)

\(\frac{39}{16}\)

24 tháng 10 2016

cách giải

23 tháng 5 2017

Ta có:

\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)

Ta lại có: 

\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)

\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)

\(=\frac{1.2.3...36}{1.2.3...36}=1\)

Từ đây ta suy ra được

\(A-B=1-1=0\)

23 tháng 5 2017

BAN  CO THE TINH RO BIEU THUC B KO?