Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
=\(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(=\frac{1}{3}-1+1\)
\(=\frac{1}{3}\)
(1/3+12/67+13/41)-(79/67-28/41). =1/3+12/613/41-79/67+28/41. =1/3+(12/67-79/67)+(13/41+28/41) =1/3+(-1)+1=1/3+0. =1/3
\(\dfrac{2}{67}-\left(\dfrac{3}{7}+\dfrac{2}{67}\right)\\ =\dfrac{2}{67}-\dfrac{215}{469}\\ =\dfrac{-3}{7}\)
\(9^{3x}:9^7-14=67\)
\(\Rightarrow9^{3x-7}=67+14\)
\(\Rightarrow9^{3x-7}=81\)
\(\Rightarrow9^{3x-7}=9^2\)
\(\Rightarrow3x-7=2\)
\(\Rightarrow3x=9\)
\(\Rightarrow x=\dfrac{9}{3}\)
\(\Rightarrow x=3\)
Đặt \(A=6^3+6^5+6^7+...+6^{99}\)
Ta có: \(A=6^3+6^5+6^7+...+6^{99}\)
\(\Leftrightarrow36\cdot A=6^5+6^7+6^9+...+6^{101}\)
\(\Leftrightarrow A-36A=6^3+6^5+6^7+...+6^{99}-6^5-6^7-6^9-...-6^{101}\)
\(\Leftrightarrow-35\cdot A=6^3-6^{101}\)
\(\Leftrightarrow A=\dfrac{6^{101}-6^3}{35}\)
\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
51593877142,65672 nhé
HT
\(3456789768558:67=5159387590\)