K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

 

a/

\(A=3^2+3^2.2^2+3^2.3^2+3^2.4^2+...+3^2.30^2=\)

\(=3^2\left(1^2+2^2+3^2+...+30^2\right)\)

Đăt biểu thức trong dấu ngoặc là B

\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+30\left(31-1\right)=\)

\(=1.2+2.3+3.4+30.31-\left(1+2+3+...+30\right)=\)

\(C=1+2+3+...+30=\dfrac{30\left(1+30\right)}{2}=465\)

\(D=1.2+2.3+3.4+...+30.31\)

\(3D=1.2.3+2.3.3+3.4.3+...+30.31.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+30.31.\left(32-29\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-29.30.31+30.31.32=\)

\(=30.31.32\Rightarrow D=\dfrac{30.31.32}{3}=10.31.32\)

\(\Rightarrow A=3^2\left(C-D\right)=3^2\left(10.31.32-465\right)\)

b/

Đặt biểu thức là A

\(\dfrac{A}{2}=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{39-37}{37.39}=\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{37}-\dfrac{1}{39}=\)

\(=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{12}{39}\Rightarrow A=\dfrac{2.12}{39}=\dfrac{24}{39}=\dfrac{8}{13}\)

8 tháng 8 2023

\(A=3.3+6.6+9.9+...+90.90\)

\(A=3^2\left(1+2^2+3^2+...+10^2\right)\)

\(A=9.\dfrac{10.\left(10+1\right)\left(2.10+1\right)}{6}\)

\(A=3.\dfrac{10.11.21}{2}\)

\(A=3465\)

4 tháng 4 2019

Tham khảo :Câu hỏi của hoàng quỳnh dương - Toán lớp 7 - Học toán với OnlineMath

4 tháng 4 2019

\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)

   \(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)

   \(=\frac{1}{3}-\frac{1}{39}\)

   \(=\frac{4}{13}\)

Study well ! >_<

29 tháng 5 2020

✫¸.•°*”˜˜”*°•✫ Ṱђầภ Ḉђết ✫•°*”˜˜”*°•.¸✫ nhân A với 2 rồi phân tích như vậy được

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+....+\frac{1}{37\cdot39}\)

\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+....+\frac{2}{37\cdot39}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{37}-\frac{1}{39}\)

\(2A=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}=\frac{4}{13}\)

\(A=\frac{4}{13}:2=\frac{4}{13}\cdot\frac{1}{2}=\frac{2}{13}\)

Vậy \(A=\frac{2}{13}\)

Bài làm

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)

\(A=\frac{1}{3}-\frac{1}{39}\)

\(A=\frac{13}{39}-\frac{1}{39}=\frac{12}{39}\)

Vậy \(A=\frac{12}{39}\)

31 tháng 5 2020

=>2A=1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39

=>2A=1/3-1/39=4/13

=>A=2/13

15 tháng 6 2015

B=1/3.5+1/5.7+1/7.9+...+1/37.39 

=1/2(2/3.5+2/5.7+2/7.9+...+2/37.39)

=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)

=1/2(1/3-1/39)

=1/2(13/39-1/39)

=1/2.4/13

=2/13

15 tháng 6 2015

1/3.5+1/5.7+1/7.9+....+1/37.39

=1/2.(1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39)

=1/2.(1/3-1/39)

=1/2.4/13

2/13

**** bạn

 

21 tháng 3 2016

minh khong hieu

21 tháng 3 2016

minh khong hieu ban thanh oi

19 tháng 6 2015

\(B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}=\frac{4}{13}\)

1 tháng 4 2017

\(\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+...+\frac{4}{97\cdot99}\)

\(=\frac{2\cdot2}{3\cdot5}+\frac{2\cdot2}{5\cdot7}+\frac{2\cdot2}{7\cdot9}+...+\frac{2\cdot2}{97\cdot99}\)

\(=\frac{2}{3}+\frac{2}{5}-\frac{2}{5}+\frac{2}{7}-\frac{2}{7}+\frac{2}{9}-...+\frac{2}{97}-\frac{2}{99}\)

\(=\frac{2}{3}-\frac{2}{99}\)

\(=\frac{64}{99}\)

26 tháng 4 2017

\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{2011.2013}\)

= 1+\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{5}\)-\(\frac{1}{5}\)+\(\frac{1}{7}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)+...+\(\frac{1}{2011}\)+\(\frac{1}{2013}\)

=1+       0          +        0        +        0         +...+        0          +         \(\frac{1}{2013}\)

=1+\(\frac{1}{2013}\)

=\(\frac{2014}{2013}\)

k dùm nha

26 tháng 4 2017

\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{2011\cdot2013}\)

\(=2\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2011\cdot2013}\right)\)

\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=2\cdot\left(1-\frac{1}{2013}\right)\)

\(=2\cdot\frac{2012}{2013}\)

\(=\frac{4024}{2013}\)