Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)
\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)
\(\Leftrightarrow84x+63-90x+30=175x+140+315\)
\(\Leftrightarrow84x-90x-175x=140+315-63-30\)
\(\Leftrightarrow-181x=362\)
\(\Leftrightarrow x=-2\)
b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)
\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)
\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)
\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)
\(\Leftrightarrow0x=-123\) (vô nghiệm)
\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x^2-3\right)^2=0\\ \Leftrightarrow x^2-3=0\\ \Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\\ b,\Leftrightarrow8x^3+12x^2+6x+1-64=0\\ \Leftrightarrow\left(2x+1\right)^3-4^3=0\\ \Leftrightarrow\left(2x+1-4\right)\left[\left(2x+1\right)^2+4\left(2x+1\right)+16\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=3\\4x^2+4x+1+8x+4+16=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\4x^2+12x+17=0\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\left(2x+3\right)^2+8=0\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
Vậy pt có nghiệm \(x=\dfrac{3}{2}\)
\(c,\Leftrightarrow\left(3-2x-5\right)\left(3-2x+5\right)=0\\ \Leftrightarrow\left(-2-2x\right)\left(8-2x\right)=0\\ \Leftrightarrow-2\left(x+1\right)\cdot2\left(4-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
x^2+x(6-2x) = 3x(x+1)-4(x^2-1)
x^2+6x-2x^2=3x^2-4x^2+4
6x-x^2=4-x^2
6x=4
x=3/2
ta có x^2 +x(6-2x) = 3x(x+1)-4(x^2-1)
hay: x^2+6x-2x^2=3x^2+3x-4x^2+4
=> x^2 + 6x -2x^2 - 3x^2 - 3x +4x -4 =0
=>3x - 4 = 0
=>3x=4
=>x=4/3
Ta có x - y = 4
=> (x - y)2 = 42
=> x2 + y2 - 2xy = 16
Thay xy = 5 vào đẳng thức trên ta được :
x2 + y2 - 2 . 5 = 16
=> x2 + y2 = 16 + 10
Vậy x2 + y2 = 26
có x-y=4
=>(x-y)^2=4^2
=>x^2+y^2-2xy=16
=>x^2+y^2-2.5=16(vì xy=5)
=>x^2+y^2=26
Xét x\(\ge\) 2 ta có:
x-1+x-2=1
=>2x-3=1
=>x=3/2(loại)
Xét 1\(\le x<2\)
x-1-x+2=1
1=1(thỏa mãn với mọi 1\(\le x<2\)
Xét x<1
-x+1-x+2=1
-2x+3=1
x=-1(TMĐK)
Vậy với x=-1 và1\(\le x<2\)
thì |x-1|+|x-2|=1
\(\frac{3}{2x+6}+\frac{x-2}{x^2+6x+9}\)
\(=\frac{3}{2\left(x+3\right)}+\frac{x^2}{\left(x+3\right)^2}\)
\(=\frac{3\left(x+3\right)}{2\left(x+3\right)\left(x+3\right)}+\frac{2x^2}{2\left(x+3\right)\left(x+3\right)}\)
\(=\frac{2x^2+3x+9}{2\left(x+3\right)^2}\)