Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Vì 2 < 3 và 22 < 32 => 222 < 332
3111<3211. Mà 3211=(25)11=255.
=>3111<255.
1714>1614. Mà 1614=(24)14=256.
Mà 255<256=>3111<255<256<1714=>3111<1714.
222 và 322
Vì 2 < 3; 22 < 32 nên 222 < 332
3111 và 1714
3111 = 319 . 312
1714 = 179 . 175
Mà 179 < 319 , 175 > 312 nên 3111 < 1714
Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!
By definition, n(n + 1)n! + n! = n! + n(n + 1)!
Therefore, S can be simplified as
1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!
So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)
\(=...\)
\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)
\(=\dfrac{101!+100\cdot101!}{101!}\)
\(=1+100=101\)
Hence, \(\dfrac{S+1}{101!}=101\)
Ta có 12 + 22 + 32 + …102 = 385
Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32
Do đó ta tính được A = 32 + 62 + 92 + …+302 = 3465
TK
S=1.4+2.5+3.6+4.7+....+n.(n+3) S = 1. ( 2 + 2 ) + 2. ( 3 + 2 ) + 3. ( 4 + 2 ) + . . . + n . [ ( n + 1 ) + 2 ] S = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) + ( 1.2 + 2.2 + 3.2 + . . . . + n .2 ) Đặt A = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) 3 A = 1.2.3 + 2.3. ( 4 − 1 ) + . . . . + n . ( n + 1 ) . [ ( n + 2 ) − ( n − 1 ) 3 A = 1.2.3 + 2.3.4 − 1.2.3 + . . . . + n . ( n + 1 ) . ( n + 2 ) − ( n − 1 ) . n . ( n + 1 ) 3 A = n . ( n + 1 ) . ( n + 2 ) A = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. ( 1 + 2 + 3 + . . . + n ) S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. n . ( n + 1 ) : 2 S = n . ( n + 1 ) . ( n + 2 ) : 3 + n . ( n + 1 ) S = n . ( n + 1 ) . [ ( n + 2 ) : 3 + 1 )
D = 1^2 + 2^2 + 3^2 + ... + n^2
= 1.( 2 - 1 ) + 2.( 3-1 ) + 3.( 4-1 ) + .... + n.[ ( n+ 1) - 1 ]
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + n.( n+1 ) - n
= [ 1.2 + 2.3 + 3.4 + ..... + n.( n + 1 ) ] - ( 1 + 2 + 3 + .... + n )
= { [ n.( n+1 ).( n+2 )] /3 } - { [ n.( n+1)] /2 }
= { n(n+1)(2n+1) }/ 6
Vậy.........
a) A = 19^30 + 5 / 19^31
B = 19^31 + 5 / 19^32
Quy đồng lấy mẫu số chung là 19^32 ta có:
A = {(19^30 x 19^32) + (5 x 19)} / 19^32 = (19^62 + 95) / 19^32
B = {(19^31 x 19^32) + 5 = (19^63 + 5) / 19^32
Vì có chung mẫu số ta chỉ cần so sánh tử số, tử số của biểu thức nào lớn hơn thì giá trị biểu thức đó lớn hơn. Nhìn vào biểu thúc ta thấy: 19^63 + 5 > 19^62 + 95 Vì vậy B > A.
tick đúng cho mình đi !
Ta có:
\(33^{23}>33^{22}\)
\(22^{32}< 22^{33}\)
mà:\(33^{22}=33^{2\cdot11}=\left(33^2\right)^{11}\)
\(22^{33}=22^{3\cdot11}=\left(22^3\right)^{11}\)
vậy ta chỉ cần so sánh \(33^2\) và\(22^3\)
\(33^2=1089\);\(22^3=10648\)
vậy \(33^{22}< 22^{33}\)
\(2^{32}< 2^{33}=\left(2^3\right)^{11}=8^{11}\)
\(3^{22}=\left(3^2\right)^{11}=9^{11}\)
\(\Rightarrow9^{11}>8^{11}\Rightarrow3^{22}>2^{32}\)