K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

5020 = 50 x 50 x 50 x ... x 50 x 50 (có 20 số)

= (50 x 50) x (50 x 50) x ... x (50 x 50)  (có 10 cặp)

= 2500 x 2500 x ... x 2500 (có 10 số)

= 250010

Mà 250010 < 255010 => 5020 < 255010

18 tháng 7 2017

ta có:

\(50^{20}=50^{2x10}=\left(50^2\right)^{10}=2500^{10}\)

Vì  \(2500< 2550=>2500^{10}< 2550^{10}=>50^{20}< 2550^{10}\)

Vậy \(50^{20}< 2550^{10}\)

7 tháng 7 2016

(x*1)+(x*3)+(x*5)+...+(x*99)=2550

x*(1+3+5+...+99)=2550

x*2500=2550

x=2550:2500

x=51/50

7 tháng 7 2016

\(\left(x.1\right)+\left(x.3\right)+...+\left(x.99\right)=2550\)

\(\Rightarrow\left(1+3+5+...+99\right)x=2550\)

Đặt \(A=1+3+5+...+99\)

Số các số hạng là: 

\(\frac{99-1}{2}+1=50\)(số)

\(\Rightarrow A=\frac{45.\left(1+99\right)}{2}=2250\)

\(\Rightarrow x.2250=2550\)

\(\Rightarrow x=\frac{2550}{2250}=\frac{17}{15}\)

Chọn B

2 tháng 5 2023

Có: `S=2+4+6+...+100`

`=> S=2(1+2+3+...+50)`

mà `1+2+3+...+50=1275`

`=> S=2.1275`

`=> S=2550`

`=>` Chọn B

Ta có 

\(2550^{10}=\left(51.50\right)^{10}=51^{10}.50^{10}>50^{10}.50^{10}=50^{20}\) 

Vậy\(50^{20}< 2550^{10}\)

1 tháng 10 2018

5020 và 255010

5020= (52)102510

Ta thấy 2510 và 255010có cùng chung một số mũ nên 255010 không cần phải tính nữa.

Vậy : 5020< 255010

8 tháng 7 2016

a/ ta co \(50^{20}=\left(50^2\right)^{10}\)

           \(\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)

           Hay \(50^{20}< 2550^{10}\)

b/   ta có  \(3^{75}=\left(3^3\right)^{25}\)

              \(5^{50}=\left(5^2\right)^{25}\)

\(\Rightarrow\left(3^3\right)^{25}=27^{25}\)

\(\Rightarrow\left(5^2\right)^{25}=25^{25}\)

Vay \(3^{75}>5^{50}\)

27 tháng 8 2016

a. Ta có: \(50^{20}=50^{2.10}=2500^{10}< 2550^{10}\)

Vậy \(5^{20}< 2550^{10}\)

Ý b làm tương tự, tách 10 thành 5.2 là được.

27 tháng 8 2016

a) 5020 và 255010

ta có : 5020=(502)10=250010

=> 250010<255010

vì 2500<2550 và 10=10

hay 5020<255010

Vậy 5020<255010

b)99910 và 9999995

Ta có : 99910 = (9992)5

          9999995 = (999.1001)5

Ta thấy : (9992)=999.999 

 999.999 < 999.1001 vì 999<1001

=> 9992<999.1001

=>(9992)5<(999.1001)5

hay 99910<9999995

 Vậy 99910< 9999995

7 tháng 7 2019

a)Ta có:\(26^8\)<\(27^8\)=\(\left(3^3\right)^8\)=\(3^{24}\)

\(9^{12}=\left(3^2\right)^{12}=3^{24}\)

\(\Rightarrow\)\(26^8< 9^{12}\)

b)Ta có: \(50^{20}=\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)

\(\Rightarrow50^{20}< 2550^{10}\)

7 tháng 7 2019

cảm ơn nhahaha

9 tháng 7 2018

Bạn tham khảo nhé 

a )  Ta có : 

\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)

\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)

Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)

\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)

b ) 

Ta có : 

\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)

\(50^{20}=50^{10}.50^{10}\)

Do \(50^{10}.51^{10}>50^{10}.50^{10}\)

\(\Rightarrow50^{20}< 2550^{10}\)

c ) 

Ta có : 

\(2^{100}=\left(2^4\right)^{25}=16^{25}\)

\(3^{75}=\left(3^3\right)^{25}=27^{25}\)

\(5^{50}=\left(5^2\right)^{25}=25^{25}\)

Do \(16^{25}< 25^{25}< 27^{25}\)

\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)

9 tháng 7 2018

b)255010>250010=5020

=>255010>5020