Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)
B = \(\frac{2}{81}\)
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
a) 2012 - ( 304 + 2012 ) + ( 2013 + 304 )
= 2012 - 304 - 2012 + 2013 + 304
= 2012 + ( - 304 ) + ( - 2012 ) + 2013 + 304
= [ 2012 + ( - 2012 ) ] + [ ( - 304 ) + 304 ] + 2013
= 0 + 0 + 2013
= 2013
b) \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(3^2.2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{3^{24}.2^{12}.5^{12}.2^9.3^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{3^{27}.5^{12}.2^{21}}\)
\(=\frac{3}{5^2}=\frac{3}{25}\)
a) 2012 - ( 304 + 2012 ) + (2013 + 304 )
= 2012 - 304 +2012 + 2013 + 304
= ( 2012 - 2012 ) + ( 304 + 304 ) + 2013
= 0 + 608 + 2013
= 2621
Chờ một chút để minh suy nghĩ
3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)
25 = 32 238 = 78310985281
88 = 16777216 999 = 9135.........899
37 = 2187 476 = 10779215329
67 = 279936 255 = 9765625
C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z