√3 tan2x+3=0 cần gấp ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)

\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)

\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)

d/

\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)

NV
19 tháng 7 2020

a/

ĐKXĐ: ...

\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)

\(\Leftrightarrow2tanx=-2\sqrt{3}\)

\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)

b/

\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)

\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)

NV
20 tháng 8 2020

ĐKXĐ: ...

\(\Leftrightarrow\frac{6tanx}{1-tan^2x}-3tanx-\frac{5}{2}=0\)

\(\Leftrightarrow12tanx-6tanx\left(1-tan^2x\right)-5=0\)

\(\Leftrightarrow6tan^3x+6tanx-5=0\)

Bạn coi lại đề :)

NV
9 tháng 10 2019

\(tan2x=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\)

\(\Rightarrow2x=-\frac{\pi}{3}+k\pi\Rightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)

Do \(x\in\left(2000\pi;2018\pi\right)\)

\(\Rightarrow2000\pi< -\frac{\pi}{6}+\frac{k\pi}{2}< 2018\pi\)

\(\Rightarrow4001\le k\le4036\) (đã làm tròn đến phần nguyên)

\(\Rightarrow\) có 36 giá trị

Trên thực tế, với các hàm lượng giác thì miền \(\left(2000\pi;2018\pi\right)\) ko khác gì miền \(\left(0;18\pi\right)\) cả, bạn tính trên \(\left(0;18\pi\right)\) kết quả cũng sẽ y hệt

9 tháng 10 2019

có cách nào giải nhanh hơn k bạn ơi

16 tháng 7 2020

\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)

NV
16 tháng 7 2020

d/

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)

Xét (2)

\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)

\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)

NV
22 tháng 7 2020

\(\Leftrightarrow tan2x=-\sqrt{3}\)

\(\Rightarrow2x=-\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)

\(-\pi\le x\le\frac{3\pi}{4}\Rightarrow-\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le\frac{3\pi}{4}\)

\(\Rightarrow-\frac{5}{3}\le k\le\frac{11}{6}\Rightarrow k=\left\{-1;0;1\right\}\)

\(\Rightarrow x=\left\{-\frac{2\pi}{3};-\frac{\pi}{6};\frac{\pi}{3}\right\}\)

NV
25 tháng 7 2020

c/

\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)

\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

d/ ĐKXĐ: ...

\(\Leftrightarrow cot^22x+3.cot2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Leftrightarrow2cos^2x-1+cosx+1=0\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

b/ ĐKXĐ: ...

\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)

\(\Leftrightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow tan^2x-2tanx+1=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)