Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow tan2x=-\sqrt{3}\)
\(\Rightarrow2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)
\(-\pi\le x\le\frac{3\pi}{4}\Rightarrow-\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le\frac{3\pi}{4}\)
\(\Rightarrow-\frac{5}{3}\le k\le\frac{11}{6}\Rightarrow k=\left\{-1;0;1\right\}\)
\(\Rightarrow x=\left\{-\frac{2\pi}{3};-\frac{\pi}{6};\frac{\pi}{3}\right\}\)
1/ ĐKXĐ: \(\cos2x\ne0\)
\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)
\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)
\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)
\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)
Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
\(tan2x=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\)
\(\Rightarrow2x=-\frac{\pi}{3}+k\pi\Rightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)
Do \(x\in\left(2000\pi;2018\pi\right)\)
\(\Rightarrow2000\pi< -\frac{\pi}{6}+\frac{k\pi}{2}< 2018\pi\)
\(\Rightarrow4001\le k\le4036\) (đã làm tròn đến phần nguyên)
\(\Rightarrow\) có 36 giá trị
Trên thực tế, với các hàm lượng giác thì miền \(\left(2000\pi;2018\pi\right)\) ko khác gì miền \(\left(0;18\pi\right)\) cả, bạn tính trên \(\left(0;18\pi\right)\) kết quả cũng sẽ y hệt
có cách nào giải nhanh hơn k bạn ơi