K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 7 2020

d/

ĐKXĐ: ...

Biến đôi biểu thức vế trái trước:

\(1+tanx.tan\frac{x}{2}=1+\frac{sinx.sin\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{sinx.sin\frac{x}{2}+cosx.cos\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{cos\left(x-\frac{x}{2}\right)}{cosx.cos\frac{x}{2}}=\frac{1}{cosx}\)

Do đó pt tương đương:

\(\sqrt{3}\left(1+tan^2x\right)-tanx-2\sqrt{3}=sinx.\frac{1}{cosx}\)

\(\Leftrightarrow\sqrt{3}tan^2x-2tanx-\sqrt{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Sử dụng kết quả biến đổi trên làm câu c sẽ lẹ hơn cách cũ

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)

\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)

\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)

\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)

\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pi+k2\pi\)

5 tháng 9 2021

a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)

b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx

⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x

⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x

⇔ 4sin2x + (sinx + cosx) . sin2x = 0

⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)

⇔ sin2x = 0

c, 2cos3x = sin3x

⇔ 2cos3x = 3sinx - 4sin3x

⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0

⇔ sin3x + 2cos3x - 3sinx.cos2x = 0

Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình

Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được : 

tan3x + 2 - 3tanx = 0

⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x

⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1

⇔ cos2x - \(\sqrt{3}sin2x\) = 1

⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)

⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

e, cos3x + sin3x = 2cos5x + 2sin5x

⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0

⇔ cos3x . (- cos2x) + sin3x . cos2x = 0

⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)

NV
16 tháng 9 2019

a/ \(\Leftrightarrow2cosx.cos2x=cos2x\)

\(\Leftrightarrow2cosx.cos2x-cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow2sinx.sin2x=sinx\)

\(\Leftrightarrow2sinx.sin2x-sinx=0\)

\(\Leftrightarrow sinx\left(2sin2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=0\\sin2x=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2019

c/ \(\Leftrightarrow sin3x-sinx+sin4x-sin2x=0\)

\(\Leftrightarrow2cos2x.sinx+2cos3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow2sinx.2cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{5}+\frac{k4\pi}{5}\\x=\pi+k4\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow sin3x-sinx-\left(sin4x-sin2x\right)=0\)

\(\Leftrightarrow2cos2x.sinx-2cos3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos2x-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=cos3x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=3x+k2\pi\\2x=-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k2\pi}{5}\end{matrix}\right.\)

19 tháng 9 2021

b)

(sin2x + cos2x)cosx + 2cos2x - sinx = 0

⇔ cos2x (cosx + 2) + sinx (2cos2 x – 1) = 0

⇔ cos2x (cosx + 2) + sinx.cos2x = 0

⇔ cos2x (cosx + sinx + 2) = 0

⇔ cos2x  = 0

⇔ 2x =  + kπ ⇔ x =  + k  (k ∈ )

19 tháng 9 2021

c) 

Đáp án:

x=π6π6+ k2ππ

và x= 5π65π6+k2ππ (k∈Z)

Lời giải:

sin2x-cos2x+3sinx-cosx-1=0

⇔ 2sinxcosx-(1-2sin²x) +3sinx-cosx-1=0

⇔ 2sin²x+2sinxcosx+3sinx-cosx-2=0

⇔ (2sin²x+3sinx-2)+ cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+2)+cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+cosx+2)=0

⇔ sinx=1212

⇔ x=π6π6+ k2ππ

hoặc x= 5π65π6+k2ππ (k∈Z)

(sinx+cosx+2)=0 (vô nghiệm do sinx+cosx+2=√22sin(x+π4π4)+2>0)

5 tháng 9 2020

2cos^2x+2cos^2(2x)+4cos^3(2x)-3cos2x=5

NV
5 tháng 9 2020

e/

\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

NV
24 tháng 7 2020

d/

ĐKXĐ: ...

\(\Leftrightarrow cos^2x+\frac{1}{cos^2x}+2=2\left(cosx+\frac{1}{cosx}\right)\)

\(\Leftrightarrow\left(cosx+\frac{1}{cosx}\right)^2=2\left(cox+\frac{1}{cosx}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx+\frac{1}{cosx}=0\\cosx+\frac{1}{cosx}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x+1=0\left(vn\right)\\cos^2x-2cosx+1=0\end{matrix}\right.\)

\(\Rightarrow cosx=1\)

\(\Rightarrow x=k2\pi\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow cos\frac{6x}{5}+2=3cos\frac{4x}{5}\)

Đặt \(\frac{2x}{5}=a\)

\(\Rightarrow cos3a+2=3cos2a\)

\(\Leftrightarrow4cos^3a-3cosa+2=6cos^2a-3\)

\(\Leftrightarrow4cos^3a-6cos^2a-3cosa+5=0\)

\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-2cosa-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{1+\sqrt{21}}{4}>1\left(l\right)\\cosa=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{5}\right)=1\\cos\left(\frac{2x}{5}\right)=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{5}=k2\pi\\\frac{2x}{5}=\pm arccos\left(\frac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k5\pi\\x=\pm\frac{5}{2}arccos\left(\frac{1-\sqrt{21}}{4}\right)+k5\pi\end{matrix}\right.\)

NV
10 tháng 10 2019

\(\Leftrightarrow8sinx.cosx\left(cos^2x-sin^2x\right)-\left(1+cos4x\right)=1\)

\(\Leftrightarrow4sin2x.cos2x-cos4x=2\)

\(\Leftrightarrow2sin4x-cos4x=2\)

\(\Leftrightarrow\frac{2}{\sqrt{5}}sin4x-\frac{1}{\sqrt{5}}cos4x=\frac{2}{\sqrt{5}}\)

\(\Leftrightarrow sin\left(4x+\alpha\right)=\frac{2}{\sqrt{5}}\)

\(\Leftrightarrow...\)

Nghiệm xấu quá, bạn tự giải nốt

10 tháng 10 2019

ớ hình như phải là sin( 4x - α ) chớ