Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e/
\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)
\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)
\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow x=k\pi\)
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
d/
ĐKXĐ: ...
Biến đôi biểu thức vế trái trước:
\(1+tanx.tan\frac{x}{2}=1+\frac{sinx.sin\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{sinx.sin\frac{x}{2}+cosx.cos\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{cos\left(x-\frac{x}{2}\right)}{cosx.cos\frac{x}{2}}=\frac{1}{cosx}\)
Do đó pt tương đương:
\(\sqrt{3}\left(1+tan^2x\right)-tanx-2\sqrt{3}=sinx.\frac{1}{cosx}\)
\(\Leftrightarrow\sqrt{3}tan^2x-2tanx-\sqrt{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Sử dụng kết quả biến đổi trên làm câu c sẽ lẹ hơn cách cũ
c/
ĐKXĐ: ...
\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)
\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)
\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)
\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)
\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pi+k2\pi\)
c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)
\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)
\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)
\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)
\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)
\(\Leftrightarrow cosx=sin^2x-cos^2x\)
\(\Leftrightarrow cosx=1-2cos^2x\)
\(\Leftrightarrow2cos^2x+cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
e/
\(\Leftrightarrow1+cos2x+1+cos4x+1+cos6x=3+3cosx.cos4x\)
\(\Leftrightarrow cos2x+cos6x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1-3cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\\2cos2x-3cosx+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(2cos^2x-1\right)-3cosx+1=0\)
\(\Leftrightarrow4cos^2x-3cosx-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arccos\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow5\left(1+cosx\right)=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow5\left(1+cosx\right)=2+sin^2x-cos^2x\)
\(\Leftrightarrow5+5cosx=2+1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
d/
ĐKXĐ: ...
\(\Leftrightarrow cos^2x+\frac{1}{cos^2x}+2=2\left(cosx+\frac{1}{cosx}\right)\)
\(\Leftrightarrow\left(cosx+\frac{1}{cosx}\right)^2=2\left(cox+\frac{1}{cosx}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx+\frac{1}{cosx}=0\\cosx+\frac{1}{cosx}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x+1=0\left(vn\right)\\cos^2x-2cosx+1=0\end{matrix}\right.\)
\(\Rightarrow cosx=1\)
\(\Rightarrow x=k2\pi\)
c/
\(\Leftrightarrow cos\frac{6x}{5}+2=3cos\frac{4x}{5}\)
Đặt \(\frac{2x}{5}=a\)
\(\Rightarrow cos3a+2=3cos2a\)
\(\Leftrightarrow4cos^3a-3cosa+2=6cos^2a-3\)
\(\Leftrightarrow4cos^3a-6cos^2a-3cosa+5=0\)
\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-2cosa-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{1+\sqrt{21}}{4}>1\left(l\right)\\cosa=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{5}\right)=1\\cos\left(\frac{2x}{5}\right)=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{5}=k2\pi\\\frac{2x}{5}=\pm arccos\left(\frac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k5\pi\\x=\pm\frac{5}{2}arccos\left(\frac{1-\sqrt{21}}{4}\right)+k5\pi\end{matrix}\right.\)