Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
a/ l 3-2xl + l 4y+5 l =0
mà l 3-2x l \(\ge\)0
l 4y+5 l \(\ge\)0
=>l 3-2x l =0 và l 4y+5 l = 0
=>3-2x=0 và 4y+5=0
=>x=3/2 và y= -5/4
b/l 5x-3l +l2y-7l=0
mà ..
=>.. tự làm nhé
a) \(\left|3x-4\right|+\left|3y+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
b) \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=\frac{-9}{25}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-9}{25}\\y=\frac{-9}{25}\end{cases}}}\)
c) \(\left|3-2x\right|+\left|4y+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}3-2x=0\\4y+5=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3\\4y=-5\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-5}{4}\end{cases}}}\)
d) \(\left|5-\frac{3}{4}x\right|+\left|\frac{2}{7}y-3\right|=0\)
\(\Rightarrow\hept{\begin{cases}5-\frac{3}{4}x=0\\\frac{2}{7}y-3=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{3}{4}x=5\\\frac{2}{7}y=3\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{20}{3}\\y=\frac{21}{2}\end{cases}}\)
e) \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
a) \(\left|4-x\right|+2x=3\)
\(\Rightarrow\left|4-x\right|=3-2x\)
Nếu \(4-x\ge0\Rightarrow x\ge-4\) thì:
\(4-x=3-2x\)
\(\Rightarrow4-3=-2x+x\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\) ( t/m )
Nếu \(4-x< 0\Rightarrow x< -4\) thì:
\(-\left(4-x\right)=3-2x\)
\(\Rightarrow-4+x=3-2x\)
\(\Rightarrow-4-3=-2x-x\)
\(\Rightarrow-7=-3x\)
\(\Rightarrow x=\frac{7}{3}\) ( loại )
Vậy \(x=-1\)
b) Vì \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)
nên \(4x\ge0\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow x=6\)
Vậy \(x=6\)
c) \(\left|2x-1\right|=2\)
\(\Rightarrow2x-1=\pm2\)
+) \(2x-1=2\Rightarrow x=\frac{3}{2}\)
+) \(2x-1=-2\Rightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{-1}{2}\right\}\)
d) \(\left|3-2x\right|+\left|4y+5\right|=0\)
\(\Rightarrow\left|3-2x\right|=0\) và \(\left|4y+5\right|=0\)
+) \(\left|3-2x\right|=0\Rightarrow3-2x=0\Rightarrow x=\frac{3}{2}\)
+) \(\left|4y+5\right|=0\Rightarrow4y+5=0\Rightarrow y=\frac{-5}{4}\)
Vậy \(x=\frac{3}{2};y=\frac{-5}{4}\)
e) \(x^2+\left|x-1\right|=x^2+2\)
\(\Rightarrow\left|x-1\right|=2\)
Đến đây làm tương tự phần c để tìm x
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
|3−2x|+|4y+5|=0|3−2x|+|4y+5|=0
⇒|3−2x|=0⇒|3−2x|=0 và |4y+5|=0|4y+5|=0
+) |3−2x|=0⇒3−2x=0⇒x=32|3−2x|=0⇒3−2x=0⇒x=32
+) |4y+5|=0⇒4y+5=0⇒y=54|4y+5|=0⇒4y+5=0⇒y=54
Vậy x=32;y=54