K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

a) \(\left|4-x\right|+2x=3\)

\(\Rightarrow\left|4-x\right|=3-2x\)

Nếu \(4-x\ge0\Rightarrow x\ge-4\) thì:
\(4-x=3-2x\)

\(\Rightarrow4-3=-2x+x\)

\(\Rightarrow-x=1\)

\(\Rightarrow x=-1\) ( t/m )

Nếu \(4-x< 0\Rightarrow x< -4\) thì:

\(-\left(4-x\right)=3-2x\)

\(\Rightarrow-4+x=3-2x\)

\(\Rightarrow-4-3=-2x-x\)

\(\Rightarrow-7=-3x\)

\(\Rightarrow x=\frac{7}{3}\) ( loại )

Vậy \(x=-1\)

b) Vì \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)

nên \(4x\ge0\Rightarrow x\ge0\)

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)

\(\Rightarrow x+1+x+2+x+3=4x\)

\(\Rightarrow x=6\)

Vậy \(x=6\)

c) \(\left|2x-1\right|=2\)

\(\Rightarrow2x-1=\pm2\)

+) \(2x-1=2\Rightarrow x=\frac{3}{2}\)

+) \(2x-1=-2\Rightarrow x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{3}{2};\frac{-1}{2}\right\}\)

d) \(\left|3-2x\right|+\left|4y+5\right|=0\)

\(\Rightarrow\left|3-2x\right|=0\)\(\left|4y+5\right|=0\)

+) \(\left|3-2x\right|=0\Rightarrow3-2x=0\Rightarrow x=\frac{3}{2}\)

+) \(\left|4y+5\right|=0\Rightarrow4y+5=0\Rightarrow y=\frac{-5}{4}\)

Vậy \(x=\frac{3}{2};y=\frac{-5}{4}\)

e) \(x^2+\left|x-1\right|=x^2+2\)

\(\Rightarrow\left|x-1\right|=2\)

Đến đây làm tương tự phần c để tìm x

5 tháng 7 2021

a) \(\left|4-x\right|+2x=3\)

<=> \(\left|4-x\right|=3-2x\)

<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

b) \(\left|x-7\right|+2x+5=6\)

<=> \(\left|x-7\right|=1-2x\)

<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)

Vậy x = -6

c) \(3x-\left|2x+1\right|=2\)

<=> \(\left|2x+1\right|=3x-2\)

<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)

Vậy x = 3

d) \(\left|x+2\right|-x=2\)

<=> \(\left|x+2\right|=x+2\)

<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)

<=> 0x = 0 (luôn đúng) và x = -2 (ktm)

Vậy x \(\ge\)-2

5 tháng 7 2021

e) \(\left|x-3\right|=21\)

<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)

<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)

Vậy x = 24 hoặc x = -18

f) \(\left|2x+3\right|-\left|x-3\right|=0\)

<=> \(\left|2x+3\right|=\left|x-3\right|\)

<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)

Vậy x thuộc {-6; 0}

g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)

          \(\left|x+\frac{2}{8}\right|\ge0\forall x\)

    \(\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)

Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)

Vậy x = 1

h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)

<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)

Lập bảng xét dấu: 

x                     -3/2              2

x - 2        2 - x    |        2 - x    0        x - 2

2x + 3  -2x - 3   0      2x + 3  |          2x + 3

Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2

<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)

Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2

<=> 4x = 1 <=> x = 1/4 ((tm)

Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2

<=> 2x = -3 <=>  x = -3/2 (ktm)

Vậy x = 1/4

i) |2x - 3| - x = |2 - x|

<=> |2x - 3| - |2 - x| = x (*)

Lập bảng xét dấu

x                    3/2               2

2x - 3   3 - 2x   0     2x - 3   |  2x - 3

2 - x     2 - x     |       2 - x    0   x - 2

Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x =  x

<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x

<=> 2x = 5 <=> x = 5/2 (ktm)

Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x

<=> 0x = -5 (vô lí)

Vậy x = 1/2

k) 2|x - 3| - |4x - 1| = 0

<=> 2|x - 3| = |4x - 1|

<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...

Bài 1:

a: \(A=\left|3x+6\right|+\left(2x-4y\right)^2+6>=6\)
Dấu '=' xảy ra khi x=-2 và 2x=4y

=>x=-2 và 4y=-4

=>x=-2 và y=-1

b: \(B=\left|2x-5\right|+\left|7-2x\right|>=\left|2x-5+7-2x\right|=2\)

Dấu '=' xảy ra khi (2x-5)(2x-7)<=0

=>5/2<=x<=7/2

4 tháng 9 2020

a) \(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)

\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{4}-\frac{3}{5}\)

\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{15}{20}-\frac{12}{20}\)

\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{13}{20}\)

\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{10}{20}\)

\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{20}\)

\(\Leftrightarrow x=\frac{1}{2}:\frac{3}{20}\)

\(\Leftrightarrow x=\frac{1}{2}.\frac{20}{3}=\frac{10}{3}\)

Vậy: \(x=\frac{10}{3}\)

b) \(3x.\left(\frac{1}{2}.x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy: \(x\in\left\{0;2\right\}\)

c) \(\left(4-x\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=\frac{3}{2}\end{cases}}}\)

Vậy: \(x\in\left\{4;\frac{3}{2}\right\}\)

d) \(\frac{4}{-3}=\frac{-12}{x}\)

\(\Leftrightarrow4x=\left(-12\right).\left(-3\right)\)

\(\Leftrightarrow4x=36\)

\(\Leftrightarrow x=9\)

Vậy: \(x=9\)

e) \(\frac{4x}{-3}=\frac{12}{-x}\)

\(\Leftrightarrow4x.\left(-x\right)=12.\left(-3\right)\)

\(\Leftrightarrow-4x^2=-36\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy: \(x\in\left\{3;-3\right\}\)

4 tháng 9 2020

a,Ta có: 3/4-(1/2:x+1/2)=3/5

                  -(1/2:x+1/2)=3/5-3/4

                  -(1/2:x+1/2)=-3/20

                      1/2:x+1/2=3/20

                             1/2:x=3/20-1/2

                             1/2:x=-7/20

                                   x=1/2:-7/20

                                   x=-10/7

b,Ta có: 3x.(1/2x-1)=0

 Với 3x=0 =>x=0

vói1/2x-1=0

   

7 tháng 7 2017

a) \(x=-\frac{7}{12}\)

b) \(x=-\frac{13}{4}\)

c) \(x=\frac{7}{24}\)

d) \(x=\frac{49}{180}\)

e) \(x=-10\)

g) \(x=15\)

h) \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

a: =>|5/4x-7/2|=|5/8x+3/5|

=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5

=>5/8x=41/10 hoặc 15/8x=29/10

=>x=164/25 hoặc x=116/75

b: =>3:|x/4-2/3|=6-21/5=9/5

=>|1/4x-2/3|=5/3

=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3

=>1/4x=7/3 hoặc 1/4x=-1

=>x=28/3 hoặc x=-4

c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)

e: =>|2x-7|=2x-7

=>2x-7>=0

=>x>=7/2