Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,1+2=3,1
2,2+3=5,2
3,3+4=7,3
4,4+5=9,4
5,5+6=6,1
6,6+7=13,6
7,7+8=15,7
8,8+9=17,8
9+10=19
100+100+100=300
1,1 + 2 =3,1
2,2+3= 5,2
3,3+4 = 7,3
4,4+5 = 9,4
5,5+6 = 11,5
6,6+7=13,6
7,7+8=15,7
8,8+9=17,8
9+10 = 19
100+100+100 = 300
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
Cần CM : \(\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\ge\left|a+b\right|-\left|c+d\right|\)
\(\Leftrightarrow\)\(\left(a+b\right)^2+\left(c+d\right)^2\ge\left(a+b\right)^2+\left(c+d\right)^2-2\left|\left(a+b\right)\left(c+d\right)\right|\)
\(\Leftrightarrow\)\(\left|\left(a+b\right)\left(c+d\right)\right|\ge0\) ( luôn đúng \(\forall\left|a+b\right|\ge\left|c+d\right|\) )
Do đó \(VT\ge\left|a+b\right|-\left|c+d\right|=\left(\sqrt{\left|a+b\right|}\right)^2-\left(\sqrt{\left|c+d\right|}\right)^2\)
\(=\left(\sqrt{\left|a+b\right|}+\sqrt{\left|c+d\right|}\right)\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)
\(\ge2\sqrt[4]{\left|a+b\right|.\left|c+d\right|}\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)
\(=2\left(\sqrt[4]{\left|a+b\right|^3.\left|c+d\right|}-\sqrt[4]{\left|a+b\right|.\left|c+d\right|^3}\right)\) ( đpcm )
.
Áp dụng bất đẳng thức Mincoxki ta có
\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
Buniacoxki \(\sqrt{\left(\left(a+b\right)^2+\left(c+d\right)^2\right)\left(1+1\right)}\ge|a+b|+|c+d|\)
Khi đó cần Cm
\(|a+b|+|c+d|\ge2\left(\sqrt{|a+b|^3|c+d|}-\sqrt{|c+d|^3|a+b|}\right)\)
Đặt \(\sqrt[4]{|a+b|}=x,\sqrt[4]{|c+d|}=y\left(x,y\ge0\right)\)
Cần Cm \(x^4+y^4\ge2\left(x^3y-xy^3\right)\left(1\right)\)
<=> \(x^3\left(x-2y\right)+y^4+2xy^3\ge0\left(2\right)\)
+ Nếu \(x\ge2y\)=> BĐT được CM
+ Nếu \(x\le2y\)
(1) <=> \(x^4+y^4+2xy^3\ge2x^3y\)
Mà \(x^4+x^2y^2\ge2x^3y\)
=> Cần CM \(y^4+2xy^3-x^2y^2\ge0\)
<=> \(y^4+xy^2\left(2y-x\right)\ge0\)luôn đúng do \(x\le2y\)
=> BĐT được CM
Dấu bằng xảy ra khi a=b=c=d=0
Ta có: a: b: c: d = 2: 3 : 4: 5 và a + b + c + d = -42
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Ta có :
\(\frac{a}{2}=-3\Rightarrow a=-6\)
\(\frac{b}{3}=-3\Rightarrow b=-9\)
\(\frac{c}{4}=-3\Rightarrow c=-12\)
\(\frac{d}{5}=-3\Rightarrow d=-15\)
Ta có: a : b : c : d = 2 : 3 : 4 : 5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
=> \(\frac{a}{2}=-3\) => a = -3.2 = -6
=> \(\frac{b}{3}=-3\) => b = -3.3 = -9
=> \(\frac{c}{4}=-3\) => c = -3.4 = -12
=> \(\frac{d}{5}=-3\) => d = -3. 5 = -15
Vậy ...
1.C
2.??? ( ko thấy c và d đâu nên ko trả lời nhưng nó sẽ là 0,5 nhé )
3 ??? ( cái này mik ko hiểu đề bài vì nó hơi ít dữ liệu )
4.D
5A
6D
7C
8B
Câu 1:
(x-18)-42=(23-43)-(70+x)
x-18-42=-20-70-x
x-18-42+20+70+x=0
2x+30=0
2x=-30
x=-15
Câu 2 : Tính tổng
a,1+(-2)+3+(-4)+...+19+(-20)
Từ 1 đến -20 có 20 số hạng
=> Có 10 nhóm
=>(1-2)+(3-4)+...+(19-20)
=-1-1-1-....-1
=-1.10
=-10
b,c,d,e làm tương tự ta được :
b) -50
c) -24
d) -99
e) -100
Câu 3 : Tìm x
a)\(x\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)
Vậy : x={0;-7}
b)\(\left(x+12\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-12\\x=3\end{cases}}}\)
Vậy:....
c)\(\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy:......
d)\(x\left(2+x\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}}\)
Vậy:.....
e) \(\left(x-1\right)\left(x+2\right)\left(-x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}}\)
Vậy:........
Câu 4 :
a) ab+ac
=a(b+c)
b) ab-ac+ad
=a(b-c+d)
c) ax-bx-cx+dx
=x(a-b-c+d)
d) a(b+c)-d(b+c)
=(b+c)(a-d)
e) ac-ad+bc-bd
=a(c-d)+b(c-d)
=(c-d)(a+b)
f) ax+by+bx+ay
=x(a+b)+y(a+b)
=(a+b)(x+y)
#H
đáp án là c1,1 nha hihi
ko có câu nào đúng cả