K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

\(\frac{3}{2.5}\)\(\frac{3}{5.8}\)+ ...... + \(\frac{3}{92.95}\)= 3 . ( \(\frac{1}{2.5}\)\(\frac{1}{5.8}\)+ .... + \(\frac{1}{92.95}\))

= 3 . \(\frac{1}{3}\). ( \(\frac{1}{2.5}\)\(\frac{1}{5.8}\)+  ..... + \(\frac{1}{92.95}\))

= 3. \(\frac{1}{3}\). ( \(\frac{1}{2}\)\(\frac{1}{5}\)\(\frac{1}{5}\)\(\frac{1}{8}\)+ ....... + \(\frac{1}{92}\)\(\frac{1}{95}\))

= 1 .( \(\frac{1}{2}\)\(\frac{1}{95}\)) = \(\frac{93}{190}\)

Thấy hay thì cho mình một k nhé!!!

19 tháng 4 2018

3/ 2.5 + 3/ 5.8 + 3/ 8.11+ ...+ 3/ 92.95

=1/2-1/5+1/5-1/8+1/8-1/11+........+1/92-1/95

=1/2-1/95

=31/60

6 tháng 8 2023

\(A=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}+\dfrac{3}{95.98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}.\dfrac{24}{49}=\dfrac{8}{49}\)

6 tháng 8 2023

\(A=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+..+\dfrac{3}{92.95}+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{3}{2.5.3}+\dfrac{3}{5.8.3}+\dfrac{3}{8.11.3}+..+\dfrac{3}{92.95.3}+\dfrac{3}{95.98.3}\)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+..+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+..+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{98}=\dfrac{49}{98}-\dfrac{1}{98}=\dfrac{48}{98}=\dfrac{24}{49}\)

10 tháng 5 2019

\(A=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{95.98}\)

\(A=\frac{2}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)

\(A=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{2}{3}.\frac{24}{49}\)

\(A=\frac{16}{49}\)

11 tháng 5 2019

\(A=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+...+\frac{2}{95.98}\)

\(\Leftrightarrow\frac{3}{2}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)

\(\Leftrightarrow\frac{3}{2}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)

\(\Leftrightarrow\frac{3}{2}A=\frac{1}{2}-\frac{1}{98}\)

\(\Leftrightarrow\frac{3}{2}A=\frac{48}{98}=\frac{24}{49}\)

\(\Leftrightarrow A=\frac{24}{49}\div\frac{3}{2}\)

\(\Leftrightarrow A=\frac{48}{147}\)

2 tháng 5 2018

3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\)

3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)

3A=\(\frac{1}{2}-\frac{1}{98}\)

3A=\(\frac{98}{196}-\frac{2}{196}\)=\(\frac{96}{196}=\frac{24}{49}\)

A=\(\frac{24}{49}:3=\frac{24}{49}.\frac{1}{3}=\frac{8}{49}\)

Vậy A = \(\frac{8}{49}\)

2 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)

\(\Rightarrow3A=3\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\right)\)

\(\Rightarrow3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}\)

\(\Rightarrow3A=\frac{24}{49}\)

\(\Rightarrow A=\frac{24}{49}:3\)

\(\Rightarrow A=\frac{8}{49}\)

Vậy \(A=\frac{8}{49}\)

Áp dụng ct : 1/n.(n+1) = 1/n - 1/n+1

Ta có : A = 1/2.5 + 1/5.8 + ...+1/95.98

           A = 1/2 - 1/5 + 1/5 - 1/8 +...+ 1/95 - 1/98

           A = 1/2 - 1/98 

           A = 24/49

k mk nha bn

24 tháng 4 2016

= 1/3 . (1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98)

= 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + 1/11 - ... + 1/92 - 1/95)

= 1/3 . (1/2 - 1/95)

= 1/3 . 93/190

= 31/190

tớ chắc nha nguten duc huy

3 tháng 5 2018

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)

\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)

3 tháng 5 2018

\(=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)

\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(=3.\frac{24}{49}\)

\(=\frac{72}{49}\)

26 tháng 4 2017

Đề hình như bị sai ban ơi sửa lại

\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)

\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(A=\dfrac{1}{2}-\dfrac{1}{95}\)

\(A=\dfrac{93}{190}\)

\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)

\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)

\(3B=2.\dfrac{93}{190}\)

\(3B=\dfrac{93}{95}\)

\(\Rightarrow B=\dfrac{31}{95}\)

25 tháng 4 2023

=2151+5171+....+951981

=12−198=21981tự làm tiếp

25 tháng 4 2023

A = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98

A = 1/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98 )

A = 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98 )

A = 1/3 . ( 1/2 - 1/98 )

A = 1/3 . 24/49

A = 8/49 tick cho tui

 

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{95}-\frac{1}{98}\)

\(=\frac{1}{2}-\frac{1}{98}\)tự làm tiếp

11 tháng 5 2022

Lấy số đầu + số cuối :3+1

9 tháng 5 2018

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92.95}+\frac{1}{95.99}\)

\(A=\frac{1}{3}\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92}+\frac{1}{95}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)

Bạn tự bấm máy tính là ra