Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(x\) - \(\dfrac{3}{5}\) = 1 - \(\dfrac{4}{5}\) + \(\dfrac{1}{6}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{30}{30}\) - \(\dfrac{24}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{6}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{18}{30}\)
\(x\) = \(\dfrac{29}{30}\)
Vậy \(x\) = \(\dfrac{29}{30}\)
b; (- \(\dfrac{10}{4}\)) + \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) thế \(x\) của em đâu nhỉ???
c; - \(\dfrac{3}{2}\) + (\(x\) - \(\dfrac{1}{2}\)) = \(\dfrac{1}{2}\)
\(x\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\)
\(x\) - \(\dfrac{1}{2}\) = 2
\(x\) = 2 + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{2}\) + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
Bài 2:
a: =>5x-1=0 hoặc 2x-1/3=0
=>x=1/6 hoặc x=1/5
b: =>x-1=4
=>x=5
c: \(\Leftrightarrow3^4< \dfrac{1}{3^2}\cdot3^{3x}< 3^{10}\)
=>4<3x-2<10
=>\(3x-2\in\left\{5;6;7;8;9\right\}\)
hay \(x=3\)
9: =>x-3=2
=>x=5
10: =>x+1/2=1/5 hoặc x+1/2=-1/5
=>x=-7/10 hoặc x=-3/10
12:
a: =>x^2=900
=>x=30 hoặc x=-30
b: =>x=1/18*27=3/2
7: =>|x-0,4|=1,1
=>x-0,4=1,1 hoặc x-0,4=-1,1
=>x=1,5 hoặc x=-0,7
a) (5x+1) ^ 2 = 4^2 : 5^ 2
( 5x+1) ^2 = (4:5) ^2
=> (5x+1) = ( 4 : 5) = 0.8
5x = 0.8 - 1
x = 0.7 : 5
x = 0,14
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
Bài 1:
\(S=2^2+4^2+6^2+...+20^2\)
\(=\left(1\cdot2\right)^2+\left(2\cdot2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)
\(=1\cdot2^2+2^2\cdot2^2+2^2\cdot3^2+...+2^2\cdot10^2\)
\(=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(=4\cdot385=1540\)
Bài 2:
\(A=2^0+2^1+2^2+...+2^{100}\)
\(A=1+2+2^2+...+2^{100}\)
\(2A=2\left(1+2+2^2+...+2^{100}\right)\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(A=2^{101}-1\)
Giải:
\(1.\) \(S=2^2+4^2+6^2+....+20^2\)
\(2^2=\left(1.2\right)^2\)
\(4^2=\left(2.2\right)^2\)
\(...\)
Vế dưới \(= \left(1.2\right)^2 + \left(2.2\right)^2 + ...+ \left(9.2\right)^2+ \left(10.2\right)^2\)
\(= 2^2.(1^2 + 2^2 + 3^2 + ...+ 9^2 + 10^2) \)
\(= 4. 385\)
\(= 1540\)
\(2.\)
\( 2A = 2^1 + 2^2 + 2^3 + 2^4 +...+\)\(2^{2011}\)
\(2A - A = ( 2^1 + 2^2 + 2^3+ 2^4 +...+ 2^{2011} ) - ( 1 + 2^2 + 2^3 +...+ 2^{2010} ) \)
\(\Rightarrow A = 2^{2011} - 1\)
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)