Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(4x-8\right)\left(12-y\right)=0\)
\(\Rightarrow\hept{\begin{cases}4x-8=0\\12-y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x=8\\y=12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=12\end{cases}}\)
\(b,\left(2x-12\right)-14=86\)
\(\Rightarrow2\left(x-6\right)=86+14=100\)
\(\Rightarrow x-6=50\)
\(\Rightarrow x=50+6=56\)
\(c,\left(127-x\right)-17=43\)
\(\Rightarrow127-x=43+17=60\)
\(\Rightarrow x=127-60=67\)
\(\left(4x-8\right)\left(12-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-8=0\\12-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=8\\y=12-0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\y=12\end{cases}}}\)
Vậy x = 2 hoặc y = 12
\(\left(2x-12\right)-14=86\)
\(\Leftrightarrow2x-12=100\)
\(\Leftrightarrow2x=112\)
\(\Leftrightarrow x=56\)
Vậy x = 56
\(\left(127-x\right)-17=43\)
\(\Leftrightarrow127-x=60\)
\(\Leftrightarrow x=127-60\)
\(\Leftrightarrow x=67\)
Vậy x = 67
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
c)\(\dfrac{3}{8}\times\dfrac{5}{8}+y=\dfrac{5}{4}\)
\(\dfrac{15}{64}+y=\dfrac{5}{4}\)
\(y=\dfrac{5}{4}-\dfrac{15}{64}\)
\(y=\dfrac{65}{64}\)
d, \(\dfrac{3}{8}+\dfrac{5}{8}\times y=\dfrac{5}{4}\)
\(\dfrac{5}{8}\times y=\dfrac{5}{4}-\dfrac{3}{8}\)
\(\dfrac{5}{8}\times y=\dfrac{7}{8}\)
\(y=\dfrac{7}{8}:\dfrac{5}{8}\)
\(y=\dfrac{7}{5}\)
a, 3/4 x y = 3/5 + 3/10
3/4 x y = 9/10
y = 9/10 : 3/4
y = 6/5
b, 3/5 : y = 3/4 - 2/5
3/5 : y = 7/20
y = 3/5 : 7/20
y = 12/7
Ta có \(2x-8=0\Rightarrow x=4\)
\(y-3=0\Rightarrow y=3\)
Vậy \(x=4;y=3\)