K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 11 2021

\(\hept{\begin{cases}2x=3y\\2y=3z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{3}=\frac{z}{2}\end{cases}}\Leftrightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=t\)

suy ra \(\hept{\begin{cases}x=9t\\y=6t\\z=4t\end{cases}}\)

\(xyz=9t.6t.4t=216t^3=216\Leftrightarrow t=1\)

\(\Rightarrow\hept{\begin{cases}x=9\\y=6\\z=4\end{cases}}\)

18 tháng 2 2017

a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)

Từ : x-y-z = 0

=>x – z = y; y – x = – z và y + z = x

Suy ra: B =\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)= -1(x,y,z\(\ne\)0)
b)Ta có : \(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có
\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) =\(\frac{4\left(3x-2y\right)+3\left(2x-4z\right)+2\left(4y-3z\right)}{16+9+4}\)
=0
=>\(\frac{4\left(3x-2y\right)}{16}\)=0 =>3x = 2y=> \(\frac{x}{2}\)=\(\frac{y}{3}\)(1)
\(\frac{3\left(2x-4z\right)}{9}\)=0 =>2z = 4x=>\(\frac{x}{2}\)=\(\frac{z}{4}\)(2)
Từ(1)và (2)=>Đpcm
c)Ta có:\(\frac{5-x}{x-2}\)=\(\frac{3-\left(x-2\right)}{x-2}\)=\(\frac{3}{x-2}\)-1(x\(\ne\)2)
M nhỏ nhất\(\Leftrightarrow\)\(\frac{3}{x-2}\)nhỏ nhất \(\Leftrightarrow\)x-2 lớn nhất và x-2 <0
18 tháng 2 2017

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)

\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

29 tháng 5 2021

a,2x3.5x4=(2.5).(x3x4)=7x7

b,6x2.(-7xy4)=[6.(-7)].(x2xy4)= -42x3y4

29 tháng 9 2016

Do 3x+1 \(⋮\)y và 3y+1\(⋮\)
nên (3x+1)(3y+1) \(⋮\)xy 
=>9xy+3x+3y+1 \(⋮\)xy 
mà 9xy \(⋮\)xy 
=>3x+3y+1 \(⋮\)xy 
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x 
Do vai trò của x,y như nhau nên giả sử 
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7 
=>x = 2,3,4,5,6 
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x

29 tháng 9 2016

Xl bn nha

Chỗ 

Thay x vào 3x+1 chia het cho y va 3y+1 chia het cho x
sử lại thành như thế này nha
Thay x vao 3x+1\(⋮y\) (*)
Từ (*)=> \(y\in\left\{7;10;13;16;19\right\}\)
Vậy .....
 
 
25 tháng 1 2017

đặt biểu thức trên là A

sử dụng tính chất phép nhân phân phối phép trừ suy ra A=1.2.3.4.5.6.7.(8.9-8-82)

=1.2.3.4.5.6.7.(72-8-64)

=1.2.3.4.5.6.7.0

=0

25 tháng 1 2017

cam on minh dang can

13 tháng 11 2016

Vì -|x+2| bé hơn hoặc bằng 0

=> -|x+2| - 11 bé hơn hoặc bằng -11

=> A bé hơn hoặc bằng -11

Dấu "=" xảy ra khi |x+2| = 0

=> x+2 = 0=> x= -2

Vậy GTLN của A = -11 khi x = -2.

 

13 tháng 11 2016

Ta có: \(-\left|x+2\right|\le0\Rightarrow-\left|x+2\right|-11\le-11\)

=>A có giá trị lớn nhất là -11

Xảy ra khi x=-2

14 tháng 9 2016

a)(|x-2|-3)(5+|x|)=0

<=>|x-2|-3=0 hoặc 5+|x|=0

*)Xét |x-2|-3=0 <=>|x-2|=3

=>x-2=±3

Với x-2=3 =>x=5

Với x-2=-3 =>x=-1

*)Xét 5+|x|=0

=>|x|=-5 (mà \(\left|x\right|\ge0>-5\) với mọi x) 

=>vô nghiệm

 

14 tháng 9 2016

(2x-1)2=1-2x

<=>4x2-4x+1=1-2x

<=>4x2-2x=0

<=>2x(2x-1)=0

<=>x=0 hoặc x=\(\frac{1}{2}\)

12 tháng 12 2016

Ta có hình vẽ sau:

 

 

A B C M D N E

a) Xét ΔABM và ΔCDM có:

MB = MD (gt)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

AM = CM (gt)

=> ΔABM = ΔCDM (c.g.c)(đpcm)

b) Vì ΔABM = ΔCDM (ý a)

=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CD (đpcm)

c) +)Vì ΔAB // CD (ý b)

=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)

Xét ΔMNB và ΔMED có:

\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)

MB = MD (gt)

\(\widehat{NBM}=\widehat{EDM}\) (cm trên)

=> ΔMNB = ΔMED (g.c.g)

=> NB = ED(2 cạnh tương ứng) (1)

+) CM tương tự ta có:

ΔMEA = ΔMNC(g.c.g)

=> EA = NC (2 cạnh tương ứng) (2)

Từ (1) và (2)

=> EA = ED => E là trung điểm của AD (đpcm)

12 tháng 12 2016

á, sao đã tl rồi thế này hả

Nguyễn Thị Thu An,

Trần Nghiên Hy

 
13 tháng 11 2016

x=5

13 tháng 11 2016

why ?