K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{3x-1}{3x+1}\)

\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)

b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)

\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)

\(=\dfrac{x-3}{3x}\)

\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)

c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)

\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)

\(=\dfrac{x-2}{2x}\)

\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)

24 tháng 11 2021

\(=8x^3+27-8x^3-7=20\)

24 tháng 11 2021

bằng 20

\(\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2-2\right)\)

\(=\left(2x+3\right)\left[\left(2x^2\right)-2x.3^2\right]-8x\left(x^2-2\right)\)

\(=\left(2x\right)^3+3^3-8x^3+16x\)

\(=18x^3+27-8x^3+16x\)

\(=16x+27\)

24 tháng 8 2021

(2x + 3)(4x2 - 6x + 9) - 8x(x2 - 2)

= (2x)3 + 33 - 8x(x2 - 2)

= 8x3 + 9  - 8x3 + 16x

= 9 + 16x

 Chúc bạn học tốt

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

27 tháng 9 2021

\(B=\left(2x-3\right)\left(4x^2+6x+9\right)-\left(x+1\right)^2-\left(x-2\right)^3\)

\(=8x^3-27-x^2-2x-1-x^3+6x^2-12x+8\)

\(=7x^3+5x^2-14x-20\)

1 tháng 8 2021

A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

A = \(\left(3x-1+2x+1\right)^2\)

 

1 tháng 8 2021

A)

<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2

<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2

<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2

<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1

<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1

<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1

<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)

<=> 25x^2

B)

<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3

<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)

<=> 35

 

29 tháng 10 2023

c: \(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\)

\(=4x^2+12x+9+4x^2-12x+9-\left(4x^2-9\right)\)

\(=8x^2+18-4x^2+9=4x^2+27\)

d: \(\left(x-1\right)\cdot\left(x^2+x+1\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\)

\(=\left(x-1\right)\left(x^2+x\cdot1+1^2\right)-\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)

\(=x^3-1-8x^3-27=-7x^3-28\)

e: \(\left(x+1\right)^3-\left(x-1\right)^3-6x^2\)

\(=x^3+3x^2+3x+1-6x^2-\left(x^3-3x^2+3x-1\right)\)

\(=x^3-3x^2+3x+1-x^3+3x^2-3x+1\)

=2

a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)

\(=4x^2-9y^2\)

Thay x=1/2 và y=1/3 vào N, ta được:

\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)

\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)

=1-1

=0

b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=\left(2x\right)^3-y^3=8x^3-y^3\)

Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)