Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-10\cdot2\cdot x+10^2=\left(x-10\right)^2\)
b) \(x^2+2\cdot5\cdot x+5^2=\left(x+5\right)^2\)
c) \(x^2-2\cdot6\cdot xy+\left(6y\right)^2=\left(x-6y\right)^2\)
a) \(x^2+10x+26+y^2+2y\)
= \(x^2+10x+25+y^2+2y+1\)
= \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
= \(x^2-2xy+y^2+y^2+2y+1\)
= \(\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+5-t^2-4t\)
= \(z^2-6z+9-\left(t^2+4t+4\right)\)
= \(\left(z-3\right)^2-\left(t+2\right)^2\)
d) \(4x^2-12x-y^2+2y+1\)
Hình như câu này sai đề -_-
a, \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+2.x.5+5^2\right)+\left(1^2+2.1.y+y^2\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b, \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x^2-2.x.y+y^2\right)+\left(y^2+2.y.1+1^2\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c,\(z^2 -6z+5-t^2-4t\)
\(=-\left(t^2+4t-z^2+6z-5\right)\)
\(=-\left(t^2+2.t.2+2^2-z^2+2.z.3-3^2\right)\)
\(=-\left(\left(t^2+2.t.2+2^2\right)-\left(z^2-2.z.3+3^2\right)\right)\)
\(=-\left(\left(t+2\right)^2-\left(z-3\right)^2\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
d, Không biết làm hihi :)
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
1. 2xy2 +x2y4+1 = (xy2+1)2
2. a)3x2+3x-10x-10=3x(x+1)-10(x+1)=(x+1)(3x-10)
b)2x2-5x-7=2x2+2x-7x-7=2x(x+1)-7(x+1)=(x+1)(2x-7)
Mong có thể giúp được bạn
\(A=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(y+x+1\right)^2+\left(x-2\right)^2-2\ge-2\)
\(minA=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(P=x^3+2021xy+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+2021xy\)
\(=\left(\dfrac{2021}{3}\right)^3\)
\(=\dfrac{8254655261}{27}\)
\(2xy^2+x^2y^4+1\\ =\left(xy^2\right)^2+2xy^2.1+1^2\\ =\left(xy^2+1\right)^2\)
Ta có :
\(2xy^2+x^2y^4+1=\left(xy^2\right)^2+2.xy^2.1+1^2\)
\(=\left(xy^2+1\right)^2\)
x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1) - 2(x - 1)
= (x - 1)(x - 2)
3x2 - 7x - 10
= 3x2 + 3x - 10x - 10
= 3x(x + 1) - 10(x + 1)
= (x + 1)(3x - 10)
2x2 - 5x - 7
= 2x2 + 2x - 7x - 7
= 2x(x + 1) - 7(x + 1)
= (x + 1)(2x - 7)
tk lai