Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(\frac{2}{x-1}=\frac{6}{x+1}\)
\(2x+2=6x-6\)
\(4x=8\)
\(x=2\)
1.
$(x-2)(x-5)=(x-3)(x-4)$
$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)
Vậy pt vô nghiệm.
2.
$(x-7)(x+7)+x^2-2=2(x^2+5)$
$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$
$\Leftrightarrow -51=10$ (vô lý)
Vậy pt vô nghiệm.
3.
$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$
$\Leftrightarrow 4x+10=-8$
$\Leftrightarrow 4x=-18$
$\Leftrightarrow x=-4,5$
4.
$(x+1)^2=(x+3)(x-2)$
$\Leftrightarrow x^2+2x+1=x^2+x-6$
$\Leftrightarrow x=-7$
a. (x - 2)(x + 2) - (x - 3)2 = 9
<=> x2 - 22 - (x - 3)2 = 32
<=> x - 2 - (x - 3) = 3
<=> x - 2 - x + 3 = 3
<=> x - x = 3 - 3 + 2
<=> 0 = 2 (Vô lí)
Vậy nghiệm của PT là S = \(\varnothing\)
b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)
\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)
\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)
\(\Leftrightarrow-x=2\)
hay x=-2
a) Ta có: \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow12x=12\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2x-2\)
\(\Leftrightarrow2x^2-4x+3-2x+2=0\)
\(\Leftrightarrow2x^2-6x+5=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{5}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)-6x-18=0\)
\(\Leftrightarrow x^2-9-x^2+6x-9=0\)
\(\Leftrightarrow6x-18=0\)
\(\Leftrightarrow6x=18\)
hay x=3
Vậy: S={3}
d) Ta có: \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=5x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-6x-22\)
\(\Leftrightarrow-5x^2+2x-1+5x^2+6x+22=0\)
\(\Leftrightarrow8x+21=0\)
\(\Leftrightarrow8x=-21\)
hay \(x=-\dfrac{21}{8}\)
Vậy: \(S=\left\{-\dfrac{21}{8}\right\}\)