Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(2x^2-2x+\left(x+1-\sqrt{3x+1}\right)+2\left(x+2-\sqrt[3]{19x+8}\right)=0\)
\(\Leftrightarrow2x^2-2x+\dfrac{x^2-x}{x+1+\sqrt[]{3x+1}}+\dfrac{\left(x+7\right)\left(x^2-x\right)}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(2+\dfrac{1}{x+1+\sqrt[]{3x+1}}+\dfrac{x+7}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(2x^2+4x+3=3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+\left(2x+1\right)-3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2-3ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=\sqrt{2x+1}\\2\sqrt{x^2+x+1}=\sqrt{2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=2x+1\\4\left(x^2+x+1\right)=2x+1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x^2-12x+21}=a>0\\\sqrt{5x^2-20x+24}=b>0\end{matrix}\right.\)
\(\Rightarrow a+b=a^2-b^2\)
\(\Leftrightarrow a+b=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)
\(\Leftrightarrow a-b-1=0\)
\(\Leftrightarrow\sqrt{5x^2-20x+24}+1=\sqrt{3x^2-12x+21}\)
\(\Leftrightarrow5x^2-20x+25+2\sqrt{5x^2-20x+24}=3x^2-12x+1\)
\(\Leftrightarrow2\sqrt{5x^2-20x+24}=-2x^2+8x-4\)
Ta có: \(\left\{{}\begin{matrix}VT=2\sqrt{5x^2-20x+24}=2\sqrt{5\left(x-2\right)^2+4}\ge4\\VP=-2x^2+8x-4=4-2\left(x-2\right)^2\le4\end{matrix}\right.\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
Ta có: \(2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\Leftrightarrow\left(2x^2+3x-27\right)+\left(\sqrt{2x^2+3x+9}-6\right)=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{2x^2+3x-27}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{\left(2x+9\right)\left(x-3\right)}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)\left(1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+9=0\\x-3=0\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=3\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\left(1\right)\end{matrix}\right.\)
Giải (1) ta có:
\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{2x^2+3x+9}+6}=-1\)
\(\Leftrightarrow1=-\sqrt{2x^2+3x+9}-6\)
\(\Leftrightarrow7=-\sqrt{2x^2+3x+9}\)
\(\Leftrightarrow49=2x^2+3x+9\)
\(\Leftrightarrow2x^2+3x-40=0\)
Ta có:Δ=32-4.2.(-40)=329
Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{329}}{4}\\x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-\sqrt{329}}{4}\end{matrix}\right.\)
Vậy phương trình có 4 nghiệm là ....
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x\le1\)
a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)
\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)
Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)
\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)
\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)
\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)
\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)
Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)
\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)
\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)
\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1