Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-13\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+13\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1=0\\3x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-\dfrac{1}{2}\left(VN\right)\\x=-\dfrac{10}{3}\end{matrix}\right.\)
\(S=\left\{-\dfrac{10}{3}\right\}\)
\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)
\(\Leftrightarrow3x+9=0\) (do \(2x^2+1>0\forall x\in R\))
\(\Leftrightarrow x=-3\)
-Vậy \(S=\left\{-3\right\}\)
Vậy các đa thức cần điền lần lượt là 4x; x + 2.
Đáp án cần chọn là: A
b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
Ta có:
\(C=2x^2-4x+6\)
\(C=2\cdot\left(x^2-2x+3\right)\)
\(C=2\cdot\left(x^2-2x+1+2\right)\)
\(C=2\cdot\left[\left(x-1\right)^2+2\right]\)
\(C=2\left(x-1\right)^2+4\)
Mà: \(2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow C=2\left(x-1\right)^2+4\ge4>0\forall x\)
Vậy tất cả các số thực đều thỏa mãn:
\(\Rightarrow x\in R\)
`C = 2x^2 - 4x + 6`
`2C = 4x^2 - 8x + 12`
`2C = ( 2x )^2 - 2 . 2x . 2 + 2^2 + 12 - 2^2`
`2C = ( 2x - 2 )^2 + 8`
Vì ` ( 2x - 2 )^2 >= 0 AAx` nên :
`( 2x - 2 )^2 + 8 >= 8 > 0 AAx`
Hay `2C > 0 AAx` . Vì `2C > 0 AAx => C > 0 AAx` .
Vậy `C > 0 AAx` ( đpcm ) .
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)