K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(\left(2x-y\right)^3+\left(x+y\right)^3-3xy\left(x+y\right)+\left(4y-x\right)^3\)

\(=\left(2x-y\right)^3-\left(x-4y\right)^3+x^3+y^3\)

\(=8x^3-12x^2y+6xy^2-y^3+x^3+y^3-\left(x^3-12x^2y+48xy^2-64y^3\right)\)

\(=9x^3-12x^2y+6xy^2-x^3+12x^2y-48xy^2+64y^3\)

\(=8x^3-42xy^2+64y^3\)

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

12 tháng 3 2020

\(C=\left(x+3y\right)\left(x^2-3xy+9y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-2\left(17y^3-x^3\right)\\ C=\left(x^3+27y^3\right)-\left(x^3-8y^3\right)-2\left(17y^3-x^3\right)\\ C=x^3+27y^3-x^3+8y^3-34y^3+2x^3\\ C=2x^3+y^3\\ \\ \)Thay x = 4 và y = 2 vào C ta được:

\(\\ C=2.4^3+2^3\\ C=128+8\\ C=136\)

Vậy giá trị của biểu thức C tại x = 4 và y = 2 là 136

13 tháng 3 2020

Em cảm ơn ạ

2 tháng 8 2019

Mọi người giúp em thêm bài 5abc, 8c với ạ!

7 tháng 2 2020

a, 5x2 - 45x = 5x(x - 9)

b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy

= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)

= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]

= 3xy[ (x - 1)2 - (a + y)2 ]

= 3xy(x - 1 + a + y)(x - 1 - a - y)

f, 3xy2 - 12xy + 12x

= 3x(y2 - 4y + 4)

= 3x(y - 2)2

g, 2x2 - 8x + 8

= 2(x2 - 4x + 4)

= 2(x - 2)2

h, 5x3 + 10x2y + 5xy2

= 5x( x2 + 2xy + y2 )

= 5x(x + y)2

k, x2 + 4x - 2xy - 4y + y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

i, x3 + ax2 - 4a - 4x

= (x3 - 4x) + (ax2 - 4a)

= x(x2 - 4) + a(x2 - 4)

= (x + a)(x2 - 4)

= (x + a)(x + 2)(x - 2)

Chúc bạn học tốt !

11 tháng 2 2020

thanks

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

17 tháng 7 2017

a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

                  \(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

                  \(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

b) sửa đề nhé!

\(6x-9-x^2=-\left(x^2-6x+9\right)\)

                       \(=-\left(x-3\right)^2\)

a: \(x^2+y^2=\left(x+y\right)^2-2xy=4-2\cdot\left(-3\right)=10\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=100-2\cdot\left(-3\right)^2=100-2\cdot9=82\)

b: \(x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

=1-3xy+3xy=1

d: \(A=\left(x+y\right)^2-4\left(x+y\right)+1=9-4\cdot3+1=10-12=-2\)

22 tháng 6 2017

\(x^3-x+3x^2y+3xy^2+y^3-y\)

\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(\Leftrightarrow\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

\(x^3-x+3x^2y+3xy^2+y^3-y\\ =\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\\ =\left(x+y\right)^3-\left(x+y\right)\\ =\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left[\left(x^2+2xy+y^2\right)-1\right]\)