Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
a)(x-3).(y+5)=-17
\(\Rightarrow-17⋮x-3\)
\(\Rightarrow x-3\inƯ\left(-17\right)=\left\{\pm1;\pm17\right\}\)
+)Ta có bảng:
x-3 | -1 | 1 | -17 | 17 |
y+5 | -17 | 17 | -1 | 1 |
x | 2\(\in Z\) | 4\(\in Z\) | -14\(\in Z\) | 20\(\in Z\) |
y | -22\(\in Z\) | 12\(\in Z\) | -6\(\in Z\) | -4\(\in Z\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;-22\right);\left(4;12\right);\left(-14;-6\right);\left(20;-4\right)\right\}\)
Chúc bn học tốt
a,Ta có:\(xy+x=3\)
\(\Leftrightarrow x\left(y+1\right)=3\)
Vì x,y thuộc Z \(\hept{\begin{cases}x\\y+1\end{cases}}\in Z\)
\(\Rightarrow x;y+1\inƯ\left(3\right)\)
\(\Rightarrow x;y+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y+1=-1\Rightarrow y=-2\end{cases}}\)
a, x + xy + y = 9
=>xy + x+y+1=10
=>x.(y+1)+(y+1)=10
=>(x+1).(y+1)= 10.1 = 1.10 = 2.5 = 5.2 = (-10).(-1) = (-1).(-10) = (-2).(-5) = (-5).(-2)
ta có bảng các trường hợp sau
x+1 | 1 | 10 | 2 | 5 | -10 | -1 | -2 | -5 |
y+1 | 10 | 1 | 5 | 2 | -1 | -10 | -5 | -2 |
x | 0 | 9 | 1 | 4 | -11 | -2 | -3 | -6 |
y | 9 | 0 | 4 | 1 | -2 | -11 | -6 | -3 |
vậy
bn tich cho mk nha
** Bổ sung điều kiện $x,y$ là số nguyên.
Lời giải:
$2x+xy+y=5$
$\Rightarrow (2x+xy)+y=5$
$\Rightarrow x(y+2)+(y+2)=7$
$\Rightarrow (x+1)(y+2)=7$
Do $x,y$ là số nguyên nên $x+1, y+2$ cũng là số nguyên. Mà $(x+1)(y+2)=7$ nên ta có các TH sau:
TH1: $x+1=1, y+2=7$
$\Rightarrow x=0; y=5$
TH2: $x+1=-1, y+2=-7$
$\Rightarrow x=-2; y=-9$
TH3: $x+1=7, y+2=1$
$\Rightarrow x=6; y=-1$
TH4: $x+1=-7, y+2=-1$
$\Rightarrow x=-8; y=-3$
Tìm \(x;y\) \(\in\) Z/ 2\(x+xy+y=5\)
Ta có: 2\(x+xy+y=5\)
⇒ \(x\)(2 + y) + y = 5
\(x\)(2 + y) = 5 - y
\(x\) = \(\dfrac{5-y}{2+y}\) (y ≠ - 2)
\(x\in\) Z ⇔ 5 - y ⋮ 2 + y
7 - 2 - y ⋮ 2 + y
7 - (2 + y) ⋮ 2 + y
7 ⋮ 2 + y
2 + y \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
Theo bảng trên ta có các cặp số nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-2; -9); (-8; -3); (6; -1); (0; 5)