Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x.(x-\(\frac{1}{7}\))= 0
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-\frac{1}{7}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}\)
Vậy x=0 hoặc x=\(\frac{1}{7}\)
a) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)
\(\Leftrightarrow\left|\frac{7}{8}x+\frac{5}{6}\right|=\left|\frac{1}{2}x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}x+\frac{5}{6}=\frac{1}{2}x+5\\\frac{7}{8}x+\frac{5}{6}=-\frac{1}{2}x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{8}x=\frac{25}{6}\\\frac{11}{8}x=-\frac{35}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{100}{9}\\x=-\frac{140}{33}\end{cases}}\)
c) \(\left|7-x\right|=5x+1\)
\(\Leftrightarrow\orbr{\begin{cases}7-x=5x+1\\x-7=5x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=6\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) \(\left|x-y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}}\)
e) \(\left|\left|2x-1\right|+\frac{1}{2}\right|=\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|+\frac{1}{2}=\frac{4}{5}\\\left|2x-1\right|+\frac{1}{2}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|=\frac{3}{10}\\\left|2x-1\right|=-\frac{13}{10}\left(vl\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=\frac{3}{10}\\2x-1=-\frac{3}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{20}\\x=\frac{7}{20}\end{cases}}\)
Ta có giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
=> 2x - 7 = x + 3
2x - x = 3 + 7
x = 10
Vậy, x = 10
Ta có giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
=> 2x - 7 = x + 3
2x - x = 3 + 7
x = 10
Vậy, x = 10
\(7^{x+2}=7^x.7^2;7^{x+1}=7^x.7;5^{2x+1}=5^{2x}.5;5^{2x+3}=5^{2x}.5^3\)
Nhóm vào rồi đặt thừa số chung là OK
\(2x.\left(x-\frac{1}{7}\right)=0\)
=> \(\orbr{\begin{cases}2x=0\\x-\frac{1}{7}=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}\)
a) x - 3/97 + x - 2/98 = x - 1/99 + x/100
<=> x + 1/99 + 1 + x + 2/98 + 1 + x + 3/97 + 1 + (x + 4/96 + 1 + x + 5/95 + 1 + x + 10/90 + 1) = 0
<=> x + 100/99 + x + 100/98 + x + 100/97 + (x + 100/96 + x + 100/95 + x + 100/90) = 0
<=> (x + 100)(1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90) = 0
Mà 1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90 khác 0
=> x + 100 = 0
=> x = -100
c) (1/1.2 + 1/2.3 + ... + 1/99.100) - 2x = 1/2
<=> (1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100) - 2x = 1/2
<=> (1 - 1/100) - 2x = 1/2
<=> 99/100 - 2x = 1/2
<=> -2x = 1/2 - 99/100
<=> -2x = -49/100
<=> x = 49/200
=> x = 49/200
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Rightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}>0\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
a) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b) \(4x^2+2x+2=0\)
2x(x−17)=02x(x−17)=0
⇔⎡⎣2x=0x−17=0⇔[2x=0x−17=0
⇔⎡⎣x=0x=17⇔[x=0x=17
Vậy x=0x=0 hoặc x=17
\(2x.x-\frac{1}{7}=0\)
\(\Rightarrow2x^2=\frac{1}{7}\)
\(\Rightarrow x^2=\frac{1}{14}\)
\(\Rightarrow x=\pm\sqrt{\frac{1}{14}}\)