Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x - 1 )^2x + 1 = 5^2x + 1
8x - 1^2x + 1 = 5^2x + 1
⇒ 8x - 1 = 5
8x - 1 + 1 = 5 + 1 ( Cộng 1 vào cả 2 vế của phương trình )
8x = 5 + 1
8x = 6
⇒ 8x/8 = 6/8 ( Chia cả hai vế của phương trình cho cùng một số hạng )
⇒ x = 6/8
⇒ x = 3/4 ( rút gọn )
Vậy x = 3/4
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
cả 3 bài đều giống nhau nên mình làm 1 bài thôi nhé
\(\dfrac{2x}{32}=1\Rightarrow2x=32\)
x = 32 : 2
x = 16
\(\dfrac{2x}{32}=1\)
\(\Rightarrow2x.1=32.1\)
\(\Rightarrow2x=32\)
\(\Rightarrow x=16\)
+) \(2x-6=0\)
\(\Rightarrow x=3\)
+) \(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1) Đặt \(A\left(x\right)=2x-6\)
Cho \(A\left(x\right)=0\)
hay \(2x-6=0\)
\(2x\) \(=0+6\)
\(2x\) \(=6\)
\(x\) \(=6:2\)
\(x\) \(=3\)
Vậy \(x=3\) là nghiệm của đa thức A (\(x\))
2) Đặt \(B\left(x\right)=2x^2-8x\)
Cho \(B\left(x\right)=0\)
hay \(2x^2-8x=0\)
\(2.x.x-8.x=0\)
\(x.\left(2x-8\right)=0\)
⇒ \(x=0\) hoặc \(2x-8=0\)
⇒ \(x=0\) hoặc \(2x\) \(=0+8\)
⇒ \(x=0\) hoặc \(2x\) \(=8\)
⇒ \(x=0\) hoặc \(x\) \(=8:2=4\)
Vậy \(x=0\) hoặc \(x=4\) là nghiệm của đa thức B (\(x\))
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
\(2^x\times8^{x-1}=32\Leftrightarrow2^x\times2^{3x-3}=32\)
\(\Leftrightarrow2^{4x-3}=32\Leftrightarrow2^{4x-3}=2^5\)
\(\Rightarrow4x-3=5\Leftrightarrow4x=8\Rightarrow x=2\)
vậy \(x=2\)
\(Ta có : 2 ^x . 8\)\(x - 1\) \(= 32\)
\(\Rightarrow\)\(2 ^ x . 2\)\(3. ( x - 1 )\) \(=\) \(32\)
\(\Rightarrow\)\(2 \)\(x + 3. ( x - 1 ) \)\(= 32\)
\(\Rightarrow\)\(2\)\(x + 3x - 3 \) \(= 32\)
\(\Rightarrow\)\(2\)\(4x - 3\) \(= 32\)
\(\Rightarrow\)\(2\)\(4x - 3\)\(= 2^5\)
\(\Rightarrow\)\(4x - 3 = 5\)
\(\Rightarrow\)\(4x = 8\)
\(\Rightarrow\)\(x = 2\)
\(Vậy : x = 2\)