Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
b: \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{y}{3}\right)^2=\left(\dfrac{2}{3}\right)^6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\\\left(\dfrac{y}{3}\right)^2=\left(\dfrac{8}{27}\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\\dfrac{y}{3}=\dfrac{8}{27}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\\dfrac{y}{3}=-\dfrac{8}{27}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{8}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{8}{9}\end{matrix}\right.\end{matrix}\right.\)
c: =>8x-1=5
=>8x=6
hay x=3/4
Nhìn mà e đã thấy hại não r
khó thế giải bằng mắt ak
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)
\(=\dfrac{-1}{72}\)
b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
Ta có: x + y + 1 = 0 => x + y = -1 => x = 0; y=-1
Ta có: \(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
=> M = 1