Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x}{6}=\dfrac{8}{3}\)
=>\(x=6\cdot\dfrac{8}{3}=\dfrac{6}{3}\cdot8=8\cdot2=16\)
b: \(\dfrac{5}{x}=\dfrac{4}{9}\)
=>\(x=\dfrac{5\cdot9}{4}=\dfrac{45}{4}\)
c: \(\dfrac{x+3}{-4}=\dfrac{5}{20}\)
=>\(x+3=\dfrac{-4\cdot5}{20}=-1\)
=>x=-1-3=-4
d: \(\dfrac{7}{3+4x}=\dfrac{-2}{9}\)
=>\(4x+3=\dfrac{9\cdot7}{-2}=-\dfrac{63}{2}\)
=>\(4x=-\dfrac{63}{2}-3=-\dfrac{69}{2}\)
=>\(x=-\dfrac{69}{8}\)
f: ĐKXĐ: x<>1
\(\dfrac{3}{x-1}=\dfrac{x-1}{27}\)
=>\(\left(x-1\right)^2=3\cdot27=81\)
=>\(\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(nhận\right)\end{matrix}\right.\)
a) \(\frac{10^4.81-16.15^2}{\left(-8\right)^4.3^{12}+6^{11}}=\frac{10^4.3^4-4^2.15^2}{8^4.3^{12}+6^{11}}=\frac{30^4-60^2}{2^{12}.3^{12}+6^{11}}=\frac{\left(30^2\right)^2-60^2}{6^{12}+6^{11}}\)
\(=\frac{900^2-60^2}{6^{11}.\left(6+1\right)}=\frac{60^2.\left(15^2-1\right)}{6^{11}.7}=\frac{60^2.224}{6^{11}.7}=\frac{2^9.3^2.5^2.7}{2^{11}.3^{11}.7}=\frac{5^2}{2^2.3^9}=\frac{25}{78732}\)
\(3^{2x+2}=9^{10}\)
\(\Rightarrow3^{2x+2}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow2x+2=20\)
\(\Rightarrow2x=20-2=18\)
\(\Rightarrow x=18:2=9\)
\(3^{2x+2}=9^{10}\)
\(\Rightarrow\) \(3^{2x+2}=\left(3^2\right)^{10}\)
\(\Rightarrow\) \(3^{2x+2}=3^{20}\)
\(\Rightarrow\) \(2x+2=20\)
\(\Rightarrow\) \(2x=18\)
\(\Rightarrow\) \(x=9\)
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
a)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tc dãy tỉ
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
Với \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)
Với \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)
Với \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)
b)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tc dãy tỉ
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
Với \(\frac{a^2}{4}=4\Rightarrow a=4\)
Với \(\frac{b^2}{9}=4\Rightarrow b=6\)
Với \(\frac{2c^2}{32}=4\Rightarrow c=8\)