K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Vì \(\left(2x-1\right)^{2k}\ge0;\left(y-\frac{1}{2}\right)^{2k}\ge0\forall x;y\)

Mà theo đề bài: \(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)

\(\Rightarrow\begin{cases}\left(2x-1\right)^{2k}=0\\\left(y-\frac{1}{2}\right)^{2k}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{1}{2}=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)

Vậy \(x=y=\frac{1}{2}\)

5 tháng 10 2016

gghut

15 tháng 12 2017

ta có \(\left(3x-2\right)^{2k}\ge0\);\(\left(y-\frac{1}{4}\right)^{2k}\ge0\)với mọi x,y,k

Dấu '=' xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(3x-2\right)^{2k}=0\\\left(y-\frac{1}{4}\right)^{2k}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2=0\\y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{1}{4}\end{cases}}}\)

15 tháng 12 2017

Vì (3x-2)^2k = [(3x-2)^k]^2 >=0 và (y-1/4)^2k = [(y-1/4)^k]^2 >=0

=> VT >=0

Dấu "=" xảy ra <=> 3x-2=0 và y-1/4=0 <=> x=2/3 và y=1/4

Vậy x=2/3;y=1/4

k mk nha

5 tháng 12 2017

\(\left(3x-2\right)^{2k}+\left(y-\dfrac{1}{4}\right)^{2k}\ge0\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(3x-2\right)^{2k}=0\\\left(y-\dfrac{1}{4}\right)^{2k}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{4}\end{matrix}\right.\)

5 tháng 12 2017

thanks