Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
Bài1:
a. Đây là dãy số cách đều 3 đơn vị.
Có số số hạng là: ( 299 - 2) : 3 + 1 = 100 (số hạng)
Tổng của dãy số là : (299+1) x 100 : 2 = 15000
b. Đây là dãy số cách đều 5 đơn vị.
Có số số hạng là : (51 - 1) : 5 +1 = 11 ( Số hạng)
Tổng: ( 51 + 1) x 11 : 2 = 286
Bài 2:
(2x-15)^5 = (2x-15)^3
(2x-15)^2 = 1
(2x-15)^2 = 1^2
=> 2x-15 = 1
2x = 16
x = 8
a/ \(51-(-12+3x)=27\)
\(\Leftrightarrow51+12-27-3x=0\Leftrightarrow36=3x\Leftrightarrow x=\frac{36}{3}=12\)
KL:........
b/ $-x + 21=15+ 2x$
\(\Leftrightarrow2x+x=21-15\Leftrightarrow2x=6\Leftrightarrow x=3\)
KL: ...........
c) $7.(x-9)-5(6-x)=-6+11.x$
\(\Leftrightarrow7x-63-30+5x=-6+11x\Leftrightarrow7x+5x-11x=-6+63+30\Leftrightarrow x=87\)
KL:............
d) $(x-3).(x^2 + 2)=0$
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x\in\varnothing\end{matrix}\right.\)\(\Leftrightarrow x=3\)
e) $|2x-7|-22=-13$
\(\Leftrightarrow\left|2x-7\right|=9\Leftrightarrow\left[{}\begin{matrix}2x-7=9\\2x-7=-9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-1\end{matrix}\right.\)
KL: ...........
f) $(2x - 1)^3=-125$
\(\Leftrightarrow\left(2x-1\right)^3=\left(-5\right)^3\Leftrightarrow2x-1=-5\Leftrightarrow x=-2\)
KL: ...........
e) \(\left(x+3\right)^3=\left(2x\right)^3\)
\(\Rightarrow x+3=2x\)
\(\Rightarrow2x-x=3\)
\(\Rightarrow x=3\)
f) \(\left(5-x\right)^5=32\)
\(\Rightarrow\left(5-x\right)^5=2^5\)
\(\Rightarrow5-x=2\)
\(\Rightarrow x=5-2\)
\(\Rightarrow x=3\)
g) \(\left(5x-6\right)^3=64\)
\(\Rightarrow\left(5x-6\right)^3=4^3\)
\(\Rightarrow5x-6=4\)
\(\Rightarrow5x=4+6\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=\dfrac{10}{2}\)
\(\Rightarrow x=5\)
h) \(5\cdot9^x=405\)
\(\Rightarrow9^x=\dfrac{405}{5}\)
\(\Rightarrow9^x=81\)
\(\Rightarrow9^x=9^2\)
\(\Rightarrow x=2\)
i) \(11^5:11^{n-2}=11^5\)
\(\Rightarrow11^{n-2}=11^5:11^5\)
\(\Rightarrow11^{n-2}=1\)
\(\Rightarrow11^{n-2}=11^0\)
\(\Rightarrow n-2=0\)
\(\Rightarrow n=2\)
k) \(\left(3x\right)^3=\left(2x+1\right)^3\)
\(\Rightarrow3x=2x+1\)
\(\Rightarrow3x-2x=1\)
\(\Rightarrow x=1\)
a) 23 . 22 . 24 = 23 + 2 + 4 = 29;
b) 102 . 103 . 105 = 102 + 3 + 5 = 1010
c) x . x5 = x1 + 5 = x6
d) a3 . a2 . a5 = a3 + 2 + 5 = a10
a) Tổng số số hạng là :
\(\left(\frac{99+1}{2}\right)=50\)( số hạng )
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+....\left(x+99\right)=0\)
\(\Leftrightarrow50x+\left(1+3+5+...+99\right)=0\)
\(\Leftrightarrow50x+\frac{\left(99+1\right).50}{2}=0\)
\(\Leftrightarrow x=\frac{-2500}{50}=-50\)
b) \(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+...+10+11=11\)
\(\Leftrightarrow\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+...+10=0\)
Gọi số số hạng ở vế trái là n ( n > 0 ) , ta có :
\(\frac{[\left(x-3\right)+10].n}{2}=0\Leftrightarrow\left(x+7\right).=0\)
Vì n khác 0 => x + 7 = 0 => x = -7
a: =>|x+3/4|=2+1/5=11/5
=>x+3/4=11/5 hoặc x+3/4=-11/5
=>x=29/20 hoặc x=-59/20
b: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
c: =>|2x-1/3|=1/6
=>2x-1/3=1/6 hoặc 2x-1/3=-1/6
=>2x=1/2 hoặc 2x=1/6
=>x=1/4 hoặc x=1/12
e: =>x+2/3=0 hoặc -2x-3/5=0
=>x=-2/3 hoặc x=-3/10
[(2x - 1) : 3 + 1] . 5 = 20
(2x - 1) : 3 + 1 = 20 : 5
(2x - 1) : 3 + 1 = 4
(2x - 1) : 3 = 4 - 1
(2x - 1) : 3 = 3
2x - 1 = 3 . 3
2x - 1 = 9
2x = 9 + 1
2x = 10
x = 10 : 2
x = 5
--------
60 - 3(x - 2) = 51
3(x - 2) = 60 - 51
3(x - 2) = 9
x - 2 = 9 : 3
x - 2 = 3
x = 3 + 2
x = 5