Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(3+\left(x-5\right)=2\left(3x-2\right)\)
\(\Leftrightarrow3+x-5=6x-4\)
\(\Leftrightarrow x-2-6x+4=0\)
\(\Leftrightarrow-5x+2=0\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy: \(S=\left\{\dfrac{2}{5}\right\}\)
c) Ta có: \(2\left(x-0.5\right)+3=0.25\left(4x-1\right)\)
\(\Leftrightarrow2x-1+3=x-\dfrac{1}{4}\)
\(\Leftrightarrow2x+2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x+\dfrac{9}{4}=0\)
\(\Leftrightarrow x=-\dfrac{9}{4}\)
Vậy: \(S=\left\{-\dfrac{9}{4}\right\}\)
d) Ta có: \(2\left(x-\dfrac{1}{4}\right)-4=-6\left(-\dfrac{1}{3}x+0.5\right)+2\)
\(\Leftrightarrow2x-\dfrac{1}{2}-4=2x-3+2\)
\(\Leftrightarrow2x-\dfrac{9}{2}=2x-1\)
\(\Leftrightarrow2x-2x=-1+\dfrac{9}{2}\)
\(\Leftrightarrow0x=\dfrac{7}{2}\)(vô lý)
Vậy: \(S=\varnothing\)
c) \(\dfrac{x-1}{5}+x=\dfrac{x+1}{7}\)
\(\Leftrightarrow\dfrac{7x-7}{35}+\dfrac{35x}{35}=\dfrac{5x+5}{35}\)
\(\Rightarrow7x-7+35x=5x+5\)
\(\Leftrightarrow7x+35x-5x=5+7\)
\(\Leftrightarrow37x=12\)
\(\Leftrightarrow x=\dfrac{12}{37}\)
Vậy pt có nghiệm duy nhất \(x=\dfrac{12}{37}\)
d) \(2\left(x-2,5\right)=0,25+\dfrac{4x-3}{8}\)
\(\Leftrightarrow\dfrac{16\left(x-2,5\right)}{8}=\dfrac{2}{8}+\dfrac{4x-3}{8}\)
\(\Rightarrow16x-40=2+4x-3\)
\(\Leftrightarrow16x-4x=2-3+40\)
\(\Leftrightarrow12x=39\)
\(\Leftrightarrow x=3,25\)
Vậy pt có nghiệm duy nhất \(x=3,25\)
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
1. 2x2 - 18 = 2 • (x2 - 9) = 2 . (x-3).(x+3)
2.x2- 7xy+ 10y2=((x2) - 7xy) + (2•5y2)=(x - 2y)•(x - 5y)
3.16x3y+0.5y2 =((16 • (x3)) • y) + (— • y2) 2= y2 ((16 • (x3)) • y) +\(\dfrac{y^2}{2}\)= (24x3 • y) + \(\dfrac{y^2}{2}\)
= \(\dfrac{\text{24x3y • 2 + y2}}{2}\) =\(\dfrac{\text{32x^3y + y2}}{2}\) = 32x3y + y2 = y • (32x3 + y) = \(\dfrac{\text{y • (32x^3 + y) }}{2}\)
4.x4-4x3+4x2 = ((x4) - (4 • (x3))) + 22x2 =((x4) - 22x3) + 22x2 = x4 - 4x3 + 4x2
= x2 • (x2 - 4x + 4) = x2 • (x - 2)2
5.2ab2-a2b-b3 = (2ab2 - a2b) - b3
= -a2b + 2ab2 - b3 = -b • (a2 - 2ab + b2)
= -b • (a - b)2
Nhớ cho đúng nha
a) \(A=4x\left(1-x\right)-0,5\)
\(\Leftrightarrow A=4x-4x^2-0,5\)
\(\Leftrightarrow A=-4x^2+4x-1+0,5\)
\(\Leftrightarrow A=-\left(4x^2-4x+1\right)+0,5\)
\(\Leftrightarrow A=-\left(2x-1\right)^2+0,5\)
Vì \(\left(2x-1\right)^2\ge0\)
Do đó \(-\left(2x-1\right)^2\le0\)
Nên \(-\left(2x-1\right)^2+0,5\le0,5\)
Vậy GTLN của A=0,5 khi \(2x-1=0\Leftrightarrow\dfrac{1}{2}\)
Ta có: \(A=4x\left(1-x\right)-0,5\)
\(=-\left[\left(2x\right)^2-2.2x+1^2\right]+\dfrac{1}{2}\)
\(=-\left(2x-1\right)^2+\dfrac{1}{2}\)
Vì \(-\left(2x-1\right)^2\ge0\forall x\Rightarrow-\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
\(\Rightarrow A\ge\dfrac{1}{2}\forall x\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(A_{MAX}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}.\)
Đề thế này mới đúng chứ? \(B=-x^2+y^2+2-2\left(x-y\right)\)
Bài 3. a) x(x-2)-2x+x=0
<=> x2-2x-2x+x=0
<=>x2-4x+x=0
<=>x2-3x=0
<=> x(x-3)=0 => x=0; x=3.
Bài làm:
\(2\left(x-0,5\right)+3=0,25\left(4x-1\right)\)
\(\Leftrightarrow2x-1+3=x-0,25\)
\(\Leftrightarrow2x-x=1-3-0,25\)
\(\Leftrightarrow x=-2,25\)
Vậy phương trình có tập nghiệm là \(S=\left\{-2,25\right\}\)