Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+3y+5z=\frac{x^2+y^2+z^2}{2}+19\)
\(x^2+y^2+z^2+38=4x+6y+10z\)
\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(x-2=y-3=z-5=0\)
\(x=2,y=3,z=5\)
x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
c) \(O\)là trung điểm \(BC\)suy ra \(OA=OB\)
\(\Rightarrow\Delta OAB\)cân tại \(O\)nên \(\widehat{OAB}=\widehat{OBA}\).
\(\Delta AMN~\Delta ACB\Rightarrow\widehat{AMN}=\widehat{ACB}\)
\(\Rightarrow\widehat{OAB}+\widehat{AMN}=\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{AIM}=90^o\)
suy ra đpcm.
d) \(\frac{P_{AMN}}{P_{ABC}}=\frac{12}{24}=\frac{1}{2}\)suy ra hệ số đồng dạng của hai tam giác \(AMN\)và \(ACB\)là \(\frac{1}{2}\).
\(\Rightarrow\frac{MN}{CB}=\frac{1}{2}\)mà \(MN=AH,BC=2OA\)nên \(\frac{AH}{OA}=1\)
do đó tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ABC}=45^o\).