K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Bạn cần ghi đầy đủ và rõ ràng các điều kiện của đề để được hỗ trợ tốt hơn.

25 tháng 11 2018

Lám đc chưa, tớ giải cho

1 tháng 12 2018

Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót  mong mọi người thông cảm và sửa lại giúp mình nha!

1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên

=>2n+1:a và 2n+3:a

=>(2n+3)-(2n+1):a

=>2:a

=>a thuộc tập hợp ước của 2

=>ước của 2=(1;2)

=>a=1;2

Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2

=>a=1

=>(2n+1,2n+3)=1

=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau

CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!

4 tháng 1 2017

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

2 tháng 12 2017

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

4 tháng 10 2017

a] 2^10 < 8^4

cầm máy tính mà bấm

4 tháng 10 2017

mk nha,nếu mk có thiếu thì bn cũng cho sai phải ko nhưng bn chỉ bảo là ai nhanh thôi chứ bn có bảo ai đúng đâu,nên mk nha

16 tháng 12 2019

nếu mk làm đúng thì cho mk nha

Gọi \(ƯCLN\) của \(2n+5\) và \(3n+7\) là d \(\Rightarrow2n+5⋮d;3n+7⋮d\)

\(\Rightarrow3\left(2n+5\right)⋮d\Leftrightarrow6n+15⋮d\)

\(\Rightarrow2\left(3n+7\right)⋮d\Leftrightarrow6n+14⋮d\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\) \(2n+5\) và \(3n+7\) là 1 \(\Rightarrow\) Hai số nguyên tốt cùng nhau

22 tháng 11 2017

Gọi ƯClN (3n+1,4n+1)= d\(\Rightarrow\left(3n+1\right)⋮d\)\(\left(4n+1\right)⋮d\)

\(\Rightarrow4.\left(3n+1\right)⋮d\)\(3.\left(4n+1\right)⋮d\Rightarrow4.\left(3n+1\right)-3.\left(4n+1\right)⋮d\)

\(\Rightarrow12n+4-\left(12n+3\right)⋮d\Rightarrow12n+4-12n-3\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\)3n+1 và 4n+1 là hai nguyên tố cùng nhau

câu còn ại tương tự

3 tháng 12 2016

Giải:

Đặt \(d=UCLN\left(3n+1;2n+1\right)\)

Ta có:

\(3n+1⋮d\)

\(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)

\(3\left(2n+1\right)⋮d\)

\(\Rightarrow6n+2⋮d\)

\(6n+3⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=UCLN\left(3n+1;2n+1\right)=1\)

\(\Rightarrow3n+1\) và 2n + 1 là 2 số nguyên tố cùng nhau

Vậy...

 

 

21 tháng 3 2020

A. \(3^{24680}\)và \(2^{37020}\)

\(3^{24680}=\left(3^2\right)^{12340}=9^{12340}\)

\(2^{37020}=\left(2^3\right)^{37020}=8^{12340}\)

Vì \(8< 9\Rightarrow8^{12340}< 9^{12340}\)

\(\Rightarrow3^{24680}>2^{37020}\)

\(B.3^{2n}\)và \(2^{3n}\)

\(3^{2n}=9^n\)

\(2^{3n}=8^n\)

\(Vì\)\(8< 9\Rightarrow8^n< 9^n\)

\(\Rightarrow3^{2n}>2^{3n}\)

học tốt