Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+2x+1+2x+2+2x+3-480=0
2x+2x.2+2x.22+2x.23=0+480
2x.(1+2+22+23)=480
2x.(1+2+4+8)=480
2x.15=480
2x=480:15
2x=32=25
Vậy x =5
nếu sai thì thông cảm nha
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)
a, 26 -3(x+1)=14
=> 3(x+1)=26-14
=> 3(x+1)=12
=> x+1=12 : 3
=> x+1=4
=> x=4-1
=> x=3
b, 5x-8=22.23
=> 5x-8=4.8
=> 5x-8=32
=> 5x=32+8
=> 5x=40
=> x=40 : 5
=> x= 8
A.26-3(x+1)=14
3(x+1)=26-14
3(x+1)=12
x+1=12:3
x+1=4
x=4-1=3
B.5x-8=2mux2.2mũ3
5x-8=32
5x=32+8
5x=40
x=40:5
x=8
\(S=\frac{3}{2^0}+\frac{3}{2^1}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+\frac{3}{2^0}+\frac{3}{2^1}+...+\frac{3}{2^8}\)
2S-S=6-\(\frac{3}{2^9}\)
S=\(5\frac{509}{512}\)
S = 2^0 + 2^2 + 2^4 +...+ 2^100
4S = 2^2 + 2^4 + 2^6 + ... + 2^100 + 2^102
4S - S = 2^2 + 2^4 + 2^6 + ... + 2^100 + 2^102 - ( 2^0 + 2^2 + 2^4 +...+ 2^100 )
3S = 2^102 - 1
S = ( 2^102 - 1 ) / 3