K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Có: 8x+8y+8z < 8x+9y+10z =100

=> x+y+z < 100/8 < 13 
Ta lại có: x+y+z>11 nên 11< x+y+z < 13, nhưng x+y+z \(\in\)Z => x+y+z = 12 
Ta có hệ: x+y+z = 12 (1)

=>8x+8y+8z=96 (2);  

8x+9y+10z  = 100  (3). 
Trừ (3) cho (1),ta được:

y+2z = 4 (4) 
Từ (4) suy ra z = 1 (vì nếu z ≥ 2 thì do y ≥ 1 => y+2z > 4,mâu thuẫn) 
Với z = 1, thay vào (3), ta được:

\(y+2.1=4\Leftrightarrow y=4-2=2\)

Thay y = 2, z = 1 vào (1), ta được:

\(x+2+1=12\Leftrightarrow x=12-3=9\)

Vậy x = 9, y =  2, z = 1

30 tháng 4 2016

Ta có:8x+8y+18z<8x+9y+10z=100\(\Rightarrow\)x+y+z<100/8<13

cùng với giả thiết ta có:11<x+y+z<13 nhưng x+y+z\(\in\)Z\(\Rightarrow\)x+y+z=12

Ta có:x+y+z=12(1);8x+9y+10z=100(2)

Nhân 2 vế của(1) với 8 rồi trừ vế của (2) cho (1) ta được y+2z=4(3)

Từ (3) suy ra z=1

Với z=1 ta được y=2;x=9

Vậy x=9;y=2;z=1

20 tháng 9 2021

Từ GT \(\Leftrightarrow a>0;bc>0\)

\(BĐT\Leftrightarrow\dfrac{a^2}{3}+\left(b+c\right)^2-3bc-a\left(b+c\right)\ge0\\ \Leftrightarrow\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\ge0\)

Vì \(a^3>36\) nên 

\(\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\\ >\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}+\dfrac{1}{4}=\left(\dfrac{b+c}{a}-\dfrac{1}{2}\right)^2\ge0\)

21 tháng 9 2021

Cám ơn bạn Hoàng Minh rất nhiều ạ!

 

23 tháng 8 2020

a) \(x^2+y^2=0\)  ( 1 ) 

Ta có : 

\(x^2\ge0\forall x\)                                                                 

\(y^2\ge0\forall x\)     

Để ( 1 ) = 0 

\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)    

\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)    

\(x^2+y^2=0\)   với \(x=y=0\) là mệnh đề đúng 

\(x^2+y^2=0\)  với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)  là mệnh đề sai 

b) \(x^2+y^2\ne0\) ( 2 ) 

Vì \(x^2\ge0\forall x\) 

\(y^2\ge0\forall y\)   

Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)    

\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) 

\(x^2+y^2\ne0\)    với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng 

\(x^2+y^2\ne0\)    với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai 

24 tháng 8 2020

đéo bít

Câu 19: B

Câu 20: A

8 tháng 3 2022

Bạn giải chị tiết cho mik xem đc hok ạ mik cảm ơn 

7 tháng 7 2017

Ta có:

\(\left(m^2+n^2\right)^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2\left(1\right)\)

\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4-2m^2n^2+n^4+4m^2n^2\)

\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4+2m^2n^2+n^4\) (luôn đúng)

Lạ có: \(a=m^2+n^2;b=m^2-n^2;c=2mn\)

Nên từ \(\left(1\right)\) suy ra \(a^2=b^2+c^2\)

Đúng theo định lý Py-ta-go đảo

Hay a,b,c là cạnh một tam giác vuông

4 tháng 5 2016

Bạn xem lại kích thước của ảnh đi

4 tháng 5 2016

Như vậy là đổi được rồi đó. Ảnh ở trang chủ sẽ cập nhật sau :)