\(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Điều kiện xác định : \(x\ge0,x\ne1\)

Rút gọn : \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

Câu a) bạn tự tính nhé :)

b) \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{6-15\sqrt{x}}{3\left(\sqrt{x}+3\right)}=\frac{2\left(\sqrt{x}+3\right)-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}=-\frac{17\sqrt{x}}{3\left(\sqrt{x}+3\right)}+\frac{2}{3}\le\frac{2}{3}\)

Dấu "=" xảy ra khi x = 0

22 tháng 7 2016

1) \(x^2+y=y^2+x\Leftrightarrow x^2-y^2-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=x\\y=1-x\end{cases}}\). Vì x,y là hai số khác nhau nên ta loại trường hợp x = y. Vậy ta có y = x-1.

\(P=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2+x^2-2x+1-x^2+x}{-x^2+x-1}\)

\(=\frac{x^2-x+1}{-\left(x^2-x+1\right)}=-1\)

16 tháng 8 2019

Lần sau bạn chụp hết nhé, chứ vậy khí nhìn lắm á :))

8 tháng 11 2016

a/ Đk: x\(\ge\)0

Khi đó ta có:

P =\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{2-3\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\frac{15\sqrt{x}-11+\left(2-3\sqrt{x}\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{\left(-5x+5\sqrt{x}\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}\)

b/ Với x\(\ge\)0

Để P=\(\frac{1}{2}\)\(\Leftrightarrow\)\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{2\left(5\sqrt{x}-2\right)-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}=0\)

\(\Rightarrow\)\(10\sqrt{x}-4-\sqrt{x}-3=0\)

\(\Rightarrow\)\(9\sqrt{x}=7\)

\(\Rightarrow\)\(\sqrt{x}=\frac{7}{9}\)

\(\Rightarrow\)\(x=\frac{49}{81}\) (thỏa mãn đk)

Vậy .....

7 tháng 11 2016

a/ p=\(\frac{5\sqrt{x}-2}{\sqrt{x}+3}\)

b/ x=\(\frac{49}{81}\)

 

13 tháng 8 2019

ĐKXĐ: \(x>1\)

a) \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(2-3\sqrt{x}\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5x-2+7\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b) \(P=\frac{1}{2}\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Leftrightarrow-10\sqrt{x}+2-\sqrt{x}-3=0\)

\(\Leftrightarrow-11\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=\frac{-1}{11}\)( vô lý )

Vậy không có giá trị của x thỏa mãn.

c) \(P\le\frac{2}{3}\)

\(\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)

\(\Leftrightarrow3\left(-5\sqrt{x}+2\right)\le2\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow-15\sqrt{x}+6\le2\sqrt{x}+6\)

\(\Leftrightarrow-17\sqrt{x}\le0\) ( luôn đúng )

Ta có đpcm.

26 tháng 4 2020

ý b bạn nhân phá sai chứ ko p nó vô lý đâu

28 tháng 7 2019

\(a,E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne\pm1\right)\)(Đề như này mới đúng!)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x-2\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{7\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{5\sqrt{x}+2\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(5\sqrt{x}-5x\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

Vậy...

\(b,\)Ta có:\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-15+17-5\sqrt{x}}{\sqrt{x}+3}=\frac{\left(-15-5\sqrt{x}\right)+17}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

Vì \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\Rightarrow-5+\frac{17}{\sqrt{x}+3}\le\frac{2}{3}\Rightarrow E\le\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)