Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
c)2a+2b=2a+b
<=>2a+2b-2a-b=0
<=>\(\left\{\begin{matrix}a\in Z\\b=0\end{matrix}\right.\)
Câu này bạn nên xem lại đề vì mình thấy nó dễ bất thường quá
Chữa lại câu c sau khi bạn Khánh sử đề nha
\(2^a+2^b=2^{a+b}\)
\(\Leftrightarrow2^a+2^b=2^a.2^b\)
\(\Leftrightarrow2^a\left(2^b-1\right)-\left(2^b-1\right)=1\)
\(\Leftrightarrow\left(2^a-1\right)\left(2^b-1\right)=1\)
Ta có bảng sau:
\(2^a-1\) | 1 | -1 |
\(2^b-1\) | 1 | -1 |
a | 1 | Không có a thỏa mãn |
b | 1 | Không có b thỏa mãn |
Vậy a=1; b=1
a) Biến đổi vế trái, ta có: - (23 - x) + 33 = - 23 + x + 33 = x +10; suy ra ĐPCM.
b) Biến đổi vế trái, ta có: VT = -a + b + b - c - a + c = 2b - 2a; suy ra ĐPCM.
c) Biến đổi vế trái và vế phải, ta có:
VT = a - b - c + b + c - l = a - l.
VP = - b + a - 1+ b = a - 1. Suy ra ĐPCM.
a) Biến đổi vế trái, ta có: - (23 - x) + 33 = - 23 + x + 33 = x +10; suy ra ĐPCM. b) Biến đổi vế trái, ta có: VT = -a + b + b - c - a + c = 2b - 2a; suy ra ĐPCM. c) Biến đổi vế trái và vế phải, ta có: VT = a - b - c + b + c - l = a - l. VP = - b + a - 1+ b = a - 1. Suy ra ĐPCM
\(a)4a\left(b-c+2a\right)\)
\(=4ab-4ac+8a^2\)
\(b)-\left(m-n\right)-\left(2m+n-p\right)\)
\(=-m+n-2m-n+p\)
\(=\left(-m-2m\right)+\left(n-n\right)+p\)
\(=p-3m\)
\(c)-\left(x-y\right)+\left(-3x-2y+z\right)\)
\(=-x+y-3x-2y+z\)
\(=\left(-x-3x\right)+\left(y-2y\right)+z\)
\(=z-4x-y\)
\(d)-\left(2a-2b\right)+\left(2a-3b+c\right)\)
\(=-2a+2b+2a-3b+c\)
\(=\left(-2a+2a\right)+\left(2b-3b\right)+c\)
\(=c-b\)
a) A = (a - 2b + c) - (a - 2b - c)
= a - 2b + c - a + 2b + c
= (a - a) - (2b - 2b) + (c + c)
= 2c
b) tương tự trên
c) C = 2(3a + b - 1) - 3(2a + b - 2)
= 6a + 2b - 2 - 6a - 3b + 3
= (6a - 6a) + (2b - 3b) - (2 - 3)
= 0 - b + 1
= -b + 1
d) D = 4(x - 1) - (3x + 2)
= 4x - 4 - 3x - 2
= (4x - 3x) - (4 + 2)
= x - 6
\(2^ax2^b=2^{\left(a+b\right)}=2014=2^{10}\)
\(\Rightarrow a+b=10\)