\(|2a-3b+99|^{2021}+\left(5a-6b\right)^{2020}=0\)

Tính hộ với ạ .

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

Answer:

\(\left|2a-2b+99\right|^{2021}+\left(5a-6b\right)^{2020}=0\)

Có: \(\left|2x-3b+99\right|^{2021}\ge0\forall a;b\)

\(\left(5a-6b\right)^{2020}\ge0\forall x;b\)

\(\Rightarrow\hept{\begin{cases}\left|2a-3b+99\right|^{2021}=0\\\left(5a-6b\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-3b+99=0\\5a-6b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-3b=-99\\5a-6b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-3b=-99\left(1\right)\\a=\frac{6b}{5}\left(2\right)\end{cases}}\)

Thay (2) vào (1)

\(2.\frac{6b}{5}-3b=-99\)

\(\Leftrightarrow12b-15b=-495\)

\(\Leftrightarrow-3b=-495\)

\(\Leftrightarrow b=165\left(3\right)\)

Thay (3) vào (2)

\(a=\frac{6.165}{5}=198\)

Vậy \(\hept{\begin{cases}a=198\\b=165\end{cases}}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2021

Lời giải:

Ta thấy:

$|2a-3b+99|^{2021}\geq 0$ với mọi $a,b$ theo tính chất trị tuyệt đối

$(5a-6b)^{2020}\geq 0$ với mọi $a,b$

Do đó để tổng của chúng bằng $0$ thì:

$|2a-3b+99|^{2021}=(5a-6b)^{2020}=0$

$\Leftrightarrow 2a-3b+99=5a-6b=0$

$\Rightarrow a=198; b=165$

31 tháng 12 2021

em cảm ơn cô ạ 

24 tháng 11 2015

bai nay de ma ban .Ban **** minh di minh lam cho 

26 tháng 12 2020

Ta có \(\hept{\begin{cases}\left|2a-3b+500\right|^{2021}\ge0\forall a;b\\\left(5a-6b\right)^{2020}\ge0\forall a;b\end{cases}}\Rightarrow\left|2a-3b+500\right|^{2021}+\left(5a-6b\right)^{2020}\ge0\forall a;b\)

Dấu "=" xảy ra <=> 

\(\hept{\begin{cases}2a-3b=500\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}4a-6b=1000\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=-1000\\b=-\frac{2500}{3}\end{cases}}\)

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

1 tháng 1 2022
Ko bít Tự làm
31 tháng 12 2021

Ta có {|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b\hept{|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b

Dấu "=" xảy ra <=> 

{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒{a=−1000b=−25003{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒\hept{a=−1000b=−25003

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

31 tháng 12 2021

cảm ơn bạn

26 tháng 5 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\) 

vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)

         \(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)

         \(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)

Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)

21 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Do đó : 

\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)

\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)

\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được : 

\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)

Vậy \(P=\frac{1}{8}\)

Chúc bạn học tốt ~ 

2 tháng 11 2021

Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0